数据库系统概念 (本科教学版·原书第7版) 数据库领域的殿堂级作品。夯实数据库理论基础,修炼数据库技术内功的之选。对深入理解数据库,深人研究数据库,深入操作数据库都具有极强的指导作用! 《数据库系统概念》是数据库系统方面的经典教材之一,其内容由浅入深,既包含数据库系统基本概念,又反映数据库技术新进展。本书基于该书第7版进行改编,保留其中的基本内容,压缩或删除了一些高级内容,更加适合作为国内高校计算机及相关专业本科生数据库课程教材。 亚伯拉罕·西尔伯沙茨 (Abraham Silberschatz) 于纽约州立大学石溪分校获得博士学位,现为耶鲁大学计算机科学系Sidney J. Weinberg教授,曾任贝尔实验室信息科学研究中心副主任。他是ACM会士、IEEE 会士以及康涅狄格科学与工程学会的成员,获得了48项专利和24项授权。他还是教科书《操作系统概念》的作者。 亨利·F. 科思 (Henry F. Korth) 于普林斯顿大学获得博士学位,现为理海大学计算机科学与工程系教授和计算机科学与商业项目联合主任,曾任贝尔实验室数据库原理研究中心主任、松下科技副总裁、得克萨斯大学奥斯汀分校
2024-12-29 18:47:52 99.64MB 系统概念
1
中天英语学习软件——新概念英语多媒体版1-4册 中天英语学习软件——新概念英语多媒体版1-4册
2024-11-08 22:32:19 2.17MB 中天英语学习软件 新概念英语
1
数据挖掘是信息技术领域中的一个重要分支,它涉及到从大型数据集中发现有价值信息的过程。在这个四川大学软件硕士的课程中,学生将全面了解数据挖掘的概念和技术,以及如何构建数据仓库模型,以便进行有效的数据挖掘。 我们要理解数据挖掘的核心概念。数据挖掘不仅仅是简单的数据收集,而是通过对海量数据的分析,提取出模式、规律和趋势,从而为决策提供依据。这通常包括分类、聚类、关联规则学习、序列模式挖掘和异常检测等多种方法。 分类是数据挖掘的一种基本技术,它通过学习算法构建一个模型,能够对新的未知数据进行预测。例如,决策树、支持向量机和神经网络等都是常见的分类方法。而聚类则是在无监督学习中,根据数据的相似性或距离将其分组,常见的聚类算法有K-means、DBSCAN等。 关联规则学习是发现数据项之间的有趣关系,如“如果客户购买了商品A,那么他们很可能也会购买商品B”。Apriori算法和FP-Growth算法是实现这一过程的常用工具。序列模式挖掘则关注事件发生的顺序,比如用户浏览网页的顺序,有助于理解用户行为。 数据仓库是数据挖掘的重要基础,它是一个设计用于高效查询和分析的历史数据集合。在构建数据仓库时,我们需要进行数据抽取、转换和加载(ETL过程),以确保数据的质量和一致性。OLAP(在线分析处理)系统常常与数据仓库配合,提供多维数据视图和快速的分析功能。 本课程可能还会介绍数据预处理,这是数据挖掘流程的关键步骤,包括数据清洗(去除噪声和不一致性)、数据集成(合并来自不同源的数据)、数据变换(如归一化、标准化)以及数据规约(减少数据量的同时保持其信息含量)。 此外,课程可能会讨论数据挖掘的应用场景,如市场营销分析、信用评估、医疗诊断、网络日志分析等。在实际应用中,数据挖掘需要结合业务知识,才能产生有价值的洞察。 学生可能还会接触到数据挖掘工具和平台,如R语言、Python的Pandas和Scikit-learn库、SQL、Apache Hadoop和Spark等,这些都是实现数据挖掘任务的强大工具。 这个四川大学的课程将为学生提供全面的数据挖掘理论知识和实践经验,帮助他们掌握从数据中提取价值的技能,为未来的职业生涯打下坚实的基础。通过深入学习,学生不仅能理解数据挖掘的原理,还能熟练运用各种技术解决实际问题。
2024-09-14 19:42:49 11.01MB 数据挖掘概念与技术
1
数学建模国赛论文模板word版,格式已调好,可直接编辑 含详细正文分析指导和模板,以及流程图概念图模板,直接填写内容,省去论文手的排版和分析烦恼: 2.1问题一的分析 要得到……的关系,可以利用……来直观的判断,其中,相关系数是……,考虑到……,因此采用……来对比求解;…… ### 数学建模国赛论文模板解析 #### 一、标题摘 要(背景) **标题**:“2024数学建模国赛word版论文模板学术论文模板(含流程图概念图模板)” - **核心内容**: 本论文模板主要针对参加2024年全国大学生数学建模竞赛的参赛者设计。该模板提供了完整的论文结构框架,包括标题、摘要、问题重述、问题分析、模型假设、符号说明、模型建立与求解、模型评价及推广等内容。 - **功能特点**: 通过预先设置好的格式,使得参赛者能够直接在模板上进行内容填充,大大简化了论文撰写过程中的排版工作。 **摘要**: - **背景介绍**: 数学建模竞赛是一项旨在培养大学生解决实际问题能力的比赛,参赛者需要根据给定的问题构建数学模型,并通过计算得出解决方案。 - **问题概述**: - 针对问题一:阐述了问题的具体背景及其研究意义。 - 针对问题二:说明了问题的关键因素及其相互作用。 - 针对问题三:介绍了问题的实际应用场景及其重要性。 - 针对问题四:提出了问题的技术难点及其挑战。 - **结论**: 总结了模型的主要贡献和解决思路。 #### 二、问题重述 - **1.1 问题背景**: - 详细描述了每个问题的研究背景和发展现状,为模型的建立提供了理论依据。 - **1.2 问题提出**: - 明确指出了每个问题的核心需求,为后续分析提供明确的方向。 - (1) 描述了问题一的基本情况。 - (2) 指出了问题二的关键要素。 - (3) 提出了问题三的主要挑战。 - (4) 分析了问题四的技术瓶颈。 #### 三、问题分析 - **2.1 问题一的分析**: - 为了得到问题一中……之间的关系,可以通过……来进行直观判断。 - 其中,相关系数是……,考虑到……等因素的影响,决定采用……方法进行对比求解。 - …… - **2.2 问题二的分析**: - 对于问题二,分析了……之间的关联性,并考虑了……的影响。 - 通过……的方法,可以有效地解决该问题。 - **2.3 问题三的分析**: - 在问题三中,探讨了……之间的相互作用。 - 采用了……模型来模拟这种互动,并通过……进行了验证。 - **2.4 问题四的分析**: - 针对问题四的特点,运用了……技术来处理复杂的数据集。 - 通过……算法,实现了高效的数据分析。 #### 四、模型假设 - 在这一部分,详细列出了每个模型建立时所依据的基本假设条件。 - 这些假设对于确保模型的有效性和适用性至关重要。 #### 五、符号说明 - 表 1:列出所有用到的符号及其含义。 - 如:“X”表示……,“Y”代表…… #### 六、模型的建立与求解 - **5.1 问题一模型的建立与求解**: - 5.1.1 模型建立:给出了具体的数学表达式,例如公式(1)。 - 5.1.2 模型求解:介绍了求解该模型的方法和步骤。 - **5.2 问题二模型的建立与求解**: - 5.2.1 模型建立:详细描述了如何构建模型。 - 5.2.2 模型求解:说明了求解过程中的关键步骤。 - **5.3 问题三模型的建立与求解**: - 5.3.1 模型建立:提供了模型的具体形式。 - 5.3.2 模型求解:解释了求解过程中使用的算法和技术。 - **5.4 问题四模型的建立与求解**: - 5.4.1 模型建立:定义了模型的边界条件。 - 5.4.2 模型求解:给出了求解过程中的具体操作。 #### 七、模型的评价及推广 - **6.1 模型的优点**: - 统一性强:模型适用于多种情况。 - 结果可靠:经过多次验证,结果稳定准确。 - 方法灵活:模型可以根据实际情况进行调整。 - **6.2 模型的不足**: - 讨论了模型存在的局限性和改进方向。 - **6.3 模型的推广**: - 探讨了模型在其他领域的应用潜力。 #### 八、参考文献 - 列举了撰写论文过程中参考的重要文献资料,如茆诗松等人的《高等数理统计》。 #### 九、附录 - 提供了额外的数据、图表或其他支持材料,以补充正文内容。 通过上述分析可以看出,这份模板不仅提供了清晰的结构指南,还包含了丰富的示例和指导建议,旨在帮助参赛者高效完成高质量的数学建模论文。
2024-09-06 12:40:18 60KB 流程图 数学建模 数模论文 论文模板
1
目标检测的概念、应用及问题 目标检测是计算机视觉领域的核心问题之一,其任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置。目标检测是一个分类、回归问题的叠加,包含分类、定位、大小和形状等问题。目标检测的应用非常广泛,包括人脸检测、行人检测、车辆检测、遥感检测等。 一、基本概念 1. 目标检测的定义:目标检测的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置。 2. 目标检测的分类:计算机视觉中关于图像识别有四大类任务:分类、定位、检测和分割。目标检测是一个分类、回归问题的叠加。 3. 目标检测的核心问题:目标检测的核心问题包括分类问题、定位问题、大小问题和形状问题。 二、目标检测算法分类 基于深度学习的目标检测算法主要分为两类:Two Stage和One Stage。 1. Two Stage:先进行区域生成,然后通过卷积神经网络进行样本分类。任务流程:特征提取 --> 生成 RP --> 分类/定位回归。常见的Two Stage目标检测算法有:R-CNN、SPP-Net、Fast R-CNN、Faster R-CNN和R-FCN等。 2. One Stage:直接在网络中提取特征来预测物体分类和位置。任务流程:特征提取–> 分类/定位回归。常见的One Stage目标检测算法有:OverFeat、YOLOv1、YOLOv2、YOLOv3、SSD和RetinaNet等。 三、目标检测应用 目标检测的应用非常广泛,包括: 1. 人脸检测:智能门控、员工考勤签到、智慧超市、人脸支付、车站、机场实名认证、公共安全等。 2. 行人检测:智能辅助驾驶、智能监控、暴恐检测、移动侦测、区域入侵检测、安全帽/安全带检测等。 3. 车辆检测:自动驾驶、违章查询、关键通道检测、广告检测等。 4. 遥感检测:大地遥感、农作物监控、军事检测等。 四、目标检测原理 目标检测分为两大系列——RCNN系列和YOLO系列,RCNN系列是基于区域检测的代表性算法,YOLO是基于区域提取的代表性算法。另外还有著名的SSD是基于前两个系列的改进。 目标检测原理包括候选区域产生、滑动窗口、选择性搜索等。 1. 候选区域产生:目标检测技术都会涉及候选框(bounding boxes)的生成,物体候选框获取当前主要使用图像分割与区域生长技术。 2. 滑动窗口:滑动窗口是一种常用的目标检测算法,通过滑窗法流程图可以很清晰理解其主要思路。 3. 选择性搜索:选择搜索是一种提高计算效率的方法,通过对图像中最有可能包含物体的区域进行搜索。 目标检测是计算机视觉领域的核心问题之一,其应用非常广泛,包括人脸检测、行人检测、车辆检测、遥感检测等。理解目标检测的概念、应用及问题对研究和应用目标检测技术非常重要。
2024-08-24 13:32:11 1.87MB 目标检测
1
【8051单片机教程】:在深入学习单片机的过程中,有几个核心概念对于初学者来说可能会显得较为抽象和难以理解。本教程将针对这些基础但重要的概念进行详细阐述,帮助电子爱好者更好地掌握单片机知识。 **一、总线** 在计算机系统中,总线扮演着关键的角色,它解决了大量器件与微处理器之间通信的连线问题。数据总线、地址总线和控制总线是构成总线的三大组成部分。数据总线用于传输数据,而控制总线则用于协调各个器件的活动,确保数据传输的正确性。地址总线则用来指定数据传输的目的地,确保数据能够准确送达指定的存储单元。 **二、数据、地址、指令** 这三者在本质上都是由二进制序列构成的,但它们的用途不同。指令是由单片机设计者预设的数字,与特定的指令助记符相对应,不能由开发者随意修改。地址是标识内存单元或输入输出口的依据,内部地址固定,外部地址可由开发者设定。数据则是微处理器处理的对象,包括地址、方式字或控制字、常数以及实际的输出值等。 **三、端口的第二功能** P0、P2和P3口在8051单片机中具有双重功能,其第二功能通常是自动激活的,不需要额外的指令进行切换。例如,P3.6和P3.7在访问外部RAM或I/O口时自动产生WR和RD信号。尽管这些端口理论上可以作为通用I/O口使用,但在实际应用中,这样做可能导致系统崩溃。 **四、程序执行过程** 单片机启动时,程序计数器(PC)的初始值为0000H,程序从ROM的该地址开始执行。因此,ROM的0000H单元必须包含一条有效的指令,以启动程序的运行。 **五、堆栈** 堆栈是内存中的一部分,用于临时存储数据,遵循“先进后出,后进先出”的原则。堆栈操作指令PUSH和POP分别用于数据压入和弹出,堆栈指针SP用于跟踪堆栈顶部的位置,每次执行PUSH或POP指令时,SP会自动更新以指示当前堆栈的深度。 理解以上概念对于深入理解和使用8051单片机至关重要。在实践中,通过编写和调试代码,这些理论知识将逐渐变得清晰,从而提高单片机的编程能力。对于初学者来说,反复实践和探索这些基本概念是提升技能的关键步骤。
2024-07-13 17:52:58 91KB 新手入门
1
基本MRP逻辑图 主生产计划 采购需求信息 制造需求信息 库存信息 产品结构 我们要做什么? 怎样做? 我们还应买什么? 我们还要做什么? MRP 销售、预测 我们已有什么?
2024-06-17 18:55:28 1.87MB
1
新概念51单片机C语言教程.入门、提高、开发郭天祥 站在学生的视角来教学生学单片机,很有效果。
1
Java之词义相似度计算(语义识别、词语情感趋势、词林相似度、拼音相似度、概念相似度、字面相似度)
2024-05-29 16:21:31 7.92MB Java
1
SimulationApp 一个概念证明算法开发用例的应用程序项目。 此存储库依赖于以下存储库中的内容来支持演示: Algo_Cluster_Infrastructure:设置Rancher Kubernetes集群的说明和Ansible手册。 Algo_Dev_Scenario_1:一个场景存储库,其中包含基本运行时(OpenJDK)和执行数据。 Algo_Dev_Scenario_2:另一个方案存储库,包含基本运行时(OpenJDK)和执行数据。 DevSecOps软件工厂中的算法开发 该项目的主要目的是演示一种在我们的领域内定制和应用DevSecOps实践的方法。 我们正在探索的用例是算法开发。 过去,我们经常看到在“繁重的数学”环境中使用模拟和蒙特卡洛分析来评估变化和评估性能的算法参考实现。 在这种情况下经常会看到大量的Matlab使用,这几乎总是作为单线程单片应用程序执行
2024-05-21 09:44:02 15KB Java
1