课堂场景行为识别(29万张照片左右)课堂场景行为识别数据集(29万张照片左右)
2026-01-02 14:23:45 211.2MB 数据集
1
FLAC3D 6.0-7.0版塑形区体积输出及剪切、张拉破坏区域体积可视化展示,FLAC3D 6.0-7.0版体积输出:塑形区、剪切破坏区及张拉破坏区体积分析图示,FLAC3D输出塑形区体积,适用于6.0和7.0版本,输出剪切破坏区域,张拉破坏区域体积,如图2中所示 ,塑形区体积; FLAC3D 6.0与7.0; 剪切破坏区域; 张拉破坏区域体积; 图2,FLAC3D 6.0/7.0 剪切张拉破坏区体积输出 FLAC3D是一种用于岩土工程和岩土工程地质模拟的有限差分计算软件,该软件在处理复杂地下结构和地质体的分析中发挥着重要作用。随着软件版本的更新迭代,其功能也得到了不断的完善和增强。在FLAC3D 6.0至7.0版本中,引入了塑形区体积输出及剪切、张拉破坏区域体积的可视化展示功能,这对于岩土工程领域中对岩土体破坏过程和变形行为的分析提供了直观的判断依据。 塑形区体积输出是指软件能够计算并展示出在模拟过程中,由于应力作用导致岩土体塑性变形的区域体积大小。在FLAC3D中,塑形区通常是指那些经历了屈服并进入塑性状态的区域,这些区域的材料特性已经发生改变,失去了原有的弹性性质。对塑形区体积的监测可以帮助工程师评估岩土体在外界荷载作用下的稳定性和变形程度,是判断岩土体安全状态的重要指标。 剪切破坏和张拉破坏是岩土体破坏的两种主要形式。剪切破坏是指岩土材料在剪切应力作用下发生破坏,这种破坏通常伴随着滑移面的形成;而张拉破坏则是由张应力导致的,它通常发生在岩土材料承受拉伸应力时,导致裂隙的扩展和材料的断裂。在FLAC3D软件中,对剪切破坏区和张拉破坏区的体积进行输出,可以清晰地展示出破坏区域的规模和分布,对预防和控制岩土体失稳具有重要意义。 在FLAC3D的可视化分析中,通过图示可以直观地看出塑形区、剪切破坏区和张拉破坏区的空间位置、形状和体积大小。例如,在图2中展示的分析图示,能够帮助工程师对岩土体内的应力分布和破坏模式有一个直观的认识,进而对工程设计和施工提供科学的指导。 此外,该功能特别适用于6.0和7.0这两个版本的FLAC3D软件,确保用户可以在最新版本的软件中,对塑形区体积及其与剪切和张拉破坏区的关联进行深入分析。这不仅提升了软件的实用性,同时也增强了工程师在岩土工程分析和设计中的效率和准确性。 通过压缩包子文件的文件名称列表,我们可以看到相关的文档内容涉及到了使用FLAC3D软件进行岩土工程分析的各种实践方法和技巧。例如,文档《基于分解联合小波阈值降噪的实现.docx》可能探讨了如何使用信号处理技术优化FLAC3D在处理复杂地质条件下的模拟结果;而《分析的输出与塑形区体积张拉和剪切破.docx》则可能涉及具体分析流程和塑形区体积计算方法的介绍。其他文件名中提到的“塑形区体积”、“剪切破坏区域”、“张拉破坏区域”等关键词,均指向了文档中相关内容的重点讨论范围。 综合以上内容,FLAC3D软件的版本更新为岩土工程领域带来了一系列技术上的进步,尤其是在塑形区体积的计算以及剪切、张拉破坏区域的可视化方面。这些功能的加入,不仅提高了工程模拟的准确性,也为岩土工程的设计、施工和安全性评估提供了强大的技术支持。
2025-12-29 20:53:57 1.28MB
1
水体分割数据集是专门用于机器学习和深度学习中图像分割任务的集合,它包含了2696张水体图片及其对应的标注信息。这些数据集以labelme格式呈现,其中包括了jpg格式的图片文件和与其对应的json标注文件。由于是单类别的分割,这个数据集主要标注的是水体部分,对于进行水体检测和识别的研究有重要作用。 图片和标注文件的数量是相同的,均为2696张,这意味着每张图片都有一个专门的json文件进行详细标注。数据集中包含的类别数为1,即仅对水体进行了标注,标注的类别名称为["water"]。这表示此数据集专注于水体分割,有助于模型训练集中识别水体。 在每个类别中,标注的水体部分采取的标注方式是画多边形框(polygon),以确保能够精确地勾画出水体的边缘。为了使用这些数据,标注工具labelme的版本为5.5.0。需要注意的是,在进行标注时,总共有4284个标注框被用于标注图片中的水体部分。这样的操作有利于提高模型对于水体识别的精确度。 使用数据集时,可以使用labelme软件打开并编辑数据集中的图片和标注信息。如果需要将json数据集转换为其他格式以适用于不同的任务或工具,比如mask、yolo或coco格式,用户需要自行进行转换。这种转换是必须的,因为不同的格式支持不同的数据集应用场景,例如语义分割或实例分割。 此外,文件中特别说明了该数据集并不对使用它训练出的模型或权重文件的精度提供任何保证。它仅仅提供准确且合理标注的图片,帮助用户在进行水体分割任务时有一个可靠的数据支持。这对于研究人员和开发者来说是一个重要的提示,意味着他们需要根据自己的任务目标,结合其他数据源或者验证方法来确保训练模型的鲁棒性和准确性。 文件中还提到了如何进行图片预览以及标注例子的展示,这为用户理解和使用数据集提供了便利。通过预览和标注例子,用户可以快速了解数据集的质量和标注方法,从而更有效地进行后续的数据处理和模型训练工作。
2025-12-29 17:09:01 1015KB 数据集
1
白细胞、红细胞和血小板是人体血液中至关重要的细胞成分,它们各自承担着不同的生理功能。白细胞是免疫系统的重要组成部分,负责防御病原体入侵;红细胞的主要功能是携带氧气输送到全身的组织和器官;血小板则对于血液凝固和止血起着关键作用。细胞图像数据集对于医疗诊断和生命科学研究具有极高的价值,尤其是在机器学习和人工智能领域中,图像识别技术的发展。 本数据集包含了5000张血液细胞的标准图像,这些图像被精心标注,可用于科研工作或是作为模型验证识别的数据源。对于图像识别模型的训练而言,一个丰富和标准的数据集是至关重要的。本数据集涉及的三类细胞分别对应不同的生理病理情况,例如白细胞的异常增多或减少可能与感染或自身免疫疾病有关,红细胞的数量和形态异常可能提示贫血或其他血液疾病,血小板数量的减少可能导致出血倾向增加。 在科研领域,该数据集可用于开发新的血液细胞识别算法,提高自动化血细胞分析的准确性和效率,同时也能够辅助医学专业人士在临床诊断中做出更快速和准确的判断。此外,利用此数据集训练的模型还可以用于生物信息学的基础研究,比如分析细胞的形态变化、识别不同发育阶段的细胞以及研究疾病对细胞形态的影响。 数据集中的每个图像中包含数量不等的白细胞、红细胞和血小板,这种多样性使得数据集更加真实和具有代表性,可以更好地模拟现实世界中的情况,从而提高模型的泛化能力。每张图像都经过了高质量的采集和标注,确保了数据的质量和可重复使用性。 数据集通常以文件的形式提供,本数据集中的文件包括:data.yaml文件,可能包含了数据集的详细信息,比如图像的尺寸、通道数、类别标签等;labels文件夹,可能包含图像对应的各种标注信息,如细胞的位置、数量等;images文件夹,则存放着所有的血液细胞图像。这样的结构便于管理和使用数据集,使得研究人员可以方便地获取和处理数据。 本数据集不仅是机器学习和人工智能领域在血液细胞识别领域中的重要资源,也为医疗诊断和生命科学研究提供了新的工具和方法。它能够帮助研究人员构建、验证和优化识别模型,从而推动医学成像技术和疾病诊断技术的发展。
2025-12-28 21:42:30 122.36MB 数据集 模型训练
1
文件太大放服务器下载,请务必先到资源详情查看然后下载 样本图:blog.csdn.net/2403_88102872/article/details/143981057 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):148 标注数量(xml文件个数):148 标注数量(txt文件个数):148 标注类别数:1 标注类别名称:["ice"] 每个类别标注的框数: ice 框数 = 214 总框数:214 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注
2025-12-23 18:03:26 407B 数据集
1
电力输电线覆冰检测技术是一项确保电力系统安全稳定运行的关键技术。在恶劣的天气条件下,输电线路上的覆冰可能会导致电线的机械强度下降,甚至引起输电线路断裂,造成大面积停电。为了有效地预防和处理这些问题,科研人员和工程师们开发了多种覆冰检测技术,并且这些技术不断向着自动化、智能化发展。 数据集是人工智能、特别是机器学习领域中不可或缺的部分。一个高质量、大规模的数据集对于训练有效的模型至关重要。这次提供的“电力场景输电线覆冰检测数据集VOC+YOLO格式1983张3类别.zip”,涵盖了1983张标注有详细信息的图片,这些图片包含三个不同的类别,分别是正常输电线、轻度覆冰输电线和严重覆冰输电线。这些数据为研究者提供了丰富的原始资料,可以用于训练和验证各种图像识别算法。 YOLO(You Only Look Once)是一种流行的实时目标检测系统。该系统的特点是快速和准确性,能够在单个网络中直接对图片进行处理,从而检测出图片中的多个目标。VOC(Visual Object Classes)数据集格式是一个常用的数据集格式,它为每张图片提供详细的类别和位置标注信息,使得研究者能够更方便地进行机器学习模型的训练和评估。 为了更好地使用这个数据集,首先需要对数据进行预处理,包括图像的缩放、增强等步骤,以适应不同检测模型的输入要求。数据集应该被分为训练集、验证集和测试集三个部分,分别用于模型的训练、参数的调整和模型性能的评估。对于电力行业的专业场景,由于检测对象的复杂性及多样性,数据集中的图片需要经过精细的标注工作,以确保标注的边界框和类别标签准确无误。 该数据集所包含的图像来自不同的拍摄环境和条件,这为模型提供了丰富的场景覆盖,有助于提高模型的泛化能力。同时,基于YOLO格式的标注,研究者们可以使用YOLO系列的算法进行训练和检测,这将极大地提高检测的速度和准确性。而且,这些数据集的使用不仅仅局限于覆冰检测,还可以扩展到电力设施的其他视觉检测任务,如电线断裂、绝缘子污秽检测等。 在模型训练完成后,评估模型的性能是必不可少的环节。通常使用准确率、召回率、F1分数等评价指标来衡量模型的性能。此外,模型的实时性能也非常重要,尤其是在电力行业,实时的检测结果对于及时采取预防措施具有决定性意义。因此,模型的运行效率和准确性都应受到同等重视。 随着人工智能技术的不断发展,尤其是深度学习在图像处理领域的应用越来越广泛,电力输电线覆冰检测技术也在朝着更加智能、高效的方向发展。而高质量的标注数据集,如本数据集,为深度学习模型提供了坚实的基础,有力地推动了电力设施安全运行的智能化管理。
2025-12-23 18:02:30 444B
1
由张韵华、王新茂编写的《Mathematica 7实用教程》的绪论部分对符号计算系统和Mathematica作一简介,以实例介绍Mathematica的风采以及怎样获取帮助;**章介绍Mathematica中的数值类型和基本量;第2章至第4章按初等数学到高等数学的内容排列,介绍如何求和、计算极限、计算不定积分、求解偏微分方程、求解线性方程组、计算矩阵的特征值和特征向量以及矩阵分解等数学运算;第5章介绍数值计算方法;第6章介绍二维和三维的函数作图、数据画图、图元素绘图以及系统程序包中各类画图函数(**章到第6章介绍如何使用系统的函数,重在调用系统的丰富的函数资源);第7章和第8章介绍定义函数方式和编写程序构建程序包。
2025-12-22 21:30:51 27.68MB
1
计算机算法设计笔记,基于张公敬老师的课做的笔记
2025-12-19 19:30:08 86.65MB
1
工地行为检测数据集VOC+YOLO格式7958张9类别文档主要介绍了针对工地环境行为进行监测的数据集。该数据集包含7958张标注图片,采用的是Pascal VOC格式和YOLO格式相结合的方式,包含了jpg图片以及对应的VOC格式xml文件和YOLO格式的txt文件。数据集中的图片经过了增强处理,以提高模型训练的泛化能力。数据集共有9个标注类别,分别是手套(Gloves)、头盔(Helmet)、人员(Person)、安全鞋(Safety Boot)、安全背心(Safety Vest)、裸露的手臂(bare-arms)、未穿安全鞋(no-boot)、未佩戴头盔(no-helmet)和未穿安全背心(no-vest)。每个类别的标注框数不等,总计达到75433个标注框。标注工具是labelImg,标注规则是使用矩形框对各类别进行标注。 该数据集的标签信息包括了图片数量、标注数量、标注类别数和具体类别名称,同时也提供了各类别标注框的数量。这种详尽的标注信息有助于机器学习模型在训练过程中对不同行为进行准确识别。值得注意的是,数据集本身不提供任何对训练模型或权重文件精度的保证,但强调所有提供的标注图片都是准确且合理的。文档还提供了图片预览和标注例子,以及数据集的下载地址,方便用户获取和使用。 本数据集适用于工地安全监测、行为识别以及安全监管等领域,能够有效支持相关人工智能应用的开发和研究。通过这些标注数据的训练,可以使得计算机视觉系统更好地理解工地场景中的具体行为,从而对潜在的安全问题进行预警和干预。
2025-12-19 10:46:50 3.5MB 数据集
1
内容概要:该数据集为[VOC]男女数据集,采用Pascal VOC格式,包含6188张jpg图片和对应的6188个xml标注文件。标注类别分为“male”(男性)、“female”(女性)和“unknow”(未知)三类,分别有3966、2852和258个标注框。数据集使用labelImg工具进行标注,标注方式为对每个类别画矩形框。数据集中存在部分图像因仅显示局部(如一只手)而被标记为“未知”。数据集旨在提供准确合理的标注,但不对基于此数据集训练出的模型或权重文件的精度做任何保证。; 适合人群:计算机视觉领域研究人员、深度学习开发者、图像识别算法工程师等。; 使用场景及目标:①用于性别分类模型的训练与测试;②可用于研究和改进基于图像的人体检测算法;③作为基准数据集评估新算法的性能。; 其他说明:数据集仅包含jpg图片和对应的xml标注文件,不包括分割用的txt文件。标注过程中对于无法明确性别的个体采用了“unknown”类别,这有助于提高模型在面对模糊情况时的鲁棒性。
2025-12-18 17:37:15 14KB 数据集 VOC格式 图像标注 性别分类
1