“使用SVD进行图像维的可视化比较” 是一项基于Python语言的图像处理工作,旨在通过应用奇异值分解(SVD)对图像进行维,并通过可视化技术比较低维度后的图像表现。 使用SVD进行图像维的可视化比较,可以帮助我们理解图像中信息的重要程度,并通过减少维度来实现图像的压缩和去噪等操作。这项工作对于计算机视觉、图像处理以及数据分析等领域具有重要意义,并为图像处
2024-12-13 18:04:28 1004KB 图像处理 python 可视化
1
在探讨本文提到的“基于采样的低复杂度小区搜索算法”之前,有必要首先了解小区搜索在LTE系统中的作用及其重要性。小区搜索是移动通信中终端与网络通信的前提,涉及寻找基站并建立接入的过程。在LTE系统中,小区搜索包括对主同步信号(PSS)和辅同步信号(SSS)的检测,这两个信号帮助移动终端实现与小区的同步,并能够正确识别小区ID。 文章中提到的主同步信号(PSS)由Zadoff-Chu(ZC)序列构成,ZC序列以其良好的相关特性,尤其适用于实现定时同步。不过,传统算法对于PSS的检测通常具有较高的复杂度,因此需要寻求优化方案来低计算量和提高实时性。 为了应对这一挑战,论文提出了基于滤波采样的主同步信号检测算法。在实现过程中,算法利用了匹配滤波器和采样技术,并且引入了频域循环卷积替代时域相关运算的思路,这样的设计显著低了算法的复杂度,同时保持了高性能。 采样是一种信号处理技术,它通过低采样率来减少数据量,这可以在保证信号质量的同时减轻处理负荷。在本算法中,通过结合采样过程和匹配滤波器,能有效低处理PSS信号所需的计算资源。 匹配滤波是一种信号处理方法,它最大化了接收信号与参考信号的相关性。这通常用于信号的检测过程,尤其是对特定信号模式的识别。通过匹配滤波器,可以提高信号检测的准确性和效率。 在频域中实现循环卷积是一种常见的信号处理手段,它允许在频域内完成时域卷积运算,对于周期性信号处理具有良好的适用性。在本算法中,循环卷积的使用替代了传统的时域相关运算,这有助于减少运算量,进一步低算法复杂度。 通过仿真实验,该算法在高斯白噪声(AWGN)信道以及多输入多输出(MIMO)信道条件下表现良好,性能与算法复杂度的低一同被证实。这表明该算法在实际应用中具有一定的应用价值和鲁棒性。 此外,论文中还涉及了LTE技术的背景知识,包括LTE的定义、它的关键技术以及TD-LTE的相关信息。LTE是一种长期演进的无线通信标准,采用了频分多址(FDMA)、MIMO技术等,拥有高数据速率和低延迟的特点,这使得LTE成为当前移动通信的重要技术之一。而TD-LTE作为中国主导的标准,在传输速率、网络延迟等方面都有优异表现,但同样也面临不少技术挑战。 本文所提出的低复杂度小区搜索算法通过采样和匹配滤波技术有效低了PSS检测算法的复杂度,提高了小区搜索过程的效率,对于推动LTE无线通信技术的发展具有实际意义和潜在的应用前景。
2024-10-18 11:53:03 486KB
1
核主元分析KPCA,主要用于数据维。核主成分分析(Kernel Principal Component Analysis, KPCA)方法是PCA方法的改进,从名字上也可以很容易看出,不同之处就在于“核”。使用核函数的目的:用以构造复杂的非线性分类器。
2024-09-10 11:35:14 209KB 特征降维
1
针对栈式稀疏去噪自编码器(SSDA)在图像去噪上训练难度大、收敛速度慢和普适性差等问题,提出了一种基于栈式修正噪自编码器的自适应图像去噪模型。采用线性修正单元作为网络激活函数,以缓解梯度弥散现象;借助残差学习和批归一化进行联合训练,加快收敛速度;而为克服新模型对噪声普适性差等问题,需要对其进行多通道并行训练,充分利用网络挖掘出的潜在数据特征集计算出最优通道权重,并通过训练权重权重预测模型预测出各通道最优权重,从而实现自适应图像去噪。实验结果表明:与目前噪较好的BM3D和SSDA方法相比,所提方法不仅在收敛效果上优于SSDA方法,而且能够自适应处理未参与训练的噪声,使其具有更好的普适性。
1
(2)高阶系统的阶近似处理 三阶系统 a,b,c都是正数,且bc a,即系统是稳定的。 阶处理:忽略高次项,得近似的一阶系统 近似条件 (2-50) (2-51) (2-52)
2024-07-16 14:47:31 2.56MB PPT
1
开发环境 Win10 X64/Visual Studio 2019/WDK 10.0 SDK 10.0.19041.0/易语言5.9 今天开源个非常简单的CallBack回调的使用 相信很多人都很熟悉这个回调,一般都是拿来做保护进程使用,但是大部分不知道这个回调还能这么利用,有提权操作当然也有权, 这些在微软文档也是公开的,只是有时候很难注意到。
2024-06-04 07:46:40 369KB
1
用Matlab处理TDMS数据(噪+频谱分析)。 一篇文章带你快速了解!
2024-05-25 10:52:13 907B matlab
1
利用ReliefF算法对回归特征变量做特征重要性排序,实现特征选择。 通过重要性排序图,选择重要的特征变量,以期实现数据维的目的。 程序直接替换数据就可以用,程序内有注释,方便学习和使用。 程序语言为matlab。
2024-05-13 17:26:37 265KB matlab
1
改善扩散 这是的代码库。 用法 README的这一部分将逐步介绍如何训练模型并从模型中取样。 安装 克隆该存储库,然后在您的终端中导航至该存储库。 然后运行: pip install -e . 这应该安装脚本所依赖的improved_diffusion python软件包。 准备资料 训练代码从图像文件目录中读取图像。 在文件夹中,我们提供了用于为ImageNet,LSUN卧室和CIFAR-10准备这些目录的说明/脚本。 要创建自己的数据集,只需将所有图像转储到扩展名为“ .jpg”,“。jpeg”或“ .png”的目录中即可。 如果您希望训练一个类条件模型,则将文件命名为“ mylabel1_XXX.jpg”,“ mylabel2_YYY.jpg”等,以便数据加载器知道“ mylabel1”和“ mylabel2”是标签。 子目录也会自动枚举,因此可以将图像组织为递归结构(尽管目录名
2024-04-29 11:21:14 45KB Python
1
首先贴一张验证码上来做案例: 第一步先通过二值化处理把干扰线去掉: from PIL import Image # 二值化处理 def two_value(): for i in range(1,5): # 打开文件夹中的图片 image=Image.open('./Img/'+str(i)+'.jpg') # 灰度图 lim=image.convert('L') # 灰度阈值设为165,低于这个值的点全部填白色 threshold=165 table=[] for j in range(256): if j<
2024-04-28 18:28:19 112KB data pixel python
1