本文详细介绍了BIM轻量化的流程,特别是通过revit导出GLTF格式的模型文件。文章首先分析了市面上主流的轻量化工具和技术方向,如广联达BIMFace、葛兰岱尔的GLWebGLBIMEngine等,并指出threejs是实现轻量化的主流技术。接着,文章详细阐述了revit的分类结构、编码规则以及插件开发的环境搭建和数据提取方法。重点介绍了GLTF格式的优势及其在revit中的导出实现,包括文件格式定义和导出步骤。最后,文章提到了通过Draco等工具对模型文件进行优化的方法,显著减小了文件大小。整体而言,本文为BIM轻量化和GLTF导出提供了全面的技术指导和实践参考。 BIM(建筑信息模型)作为建筑行业重要的数字化工具,其轻量化处理对于提高工作效率和促进项目协作具有重要意义。本文深入探讨了BIM轻量化流程及其与GLTF导出的相关技术细节。文章分析了市场上流行的轻量化工具和技术路线,其中广联达BIMFace和葛兰岱尔的GLWebGLBIMEngine作为典型案例被提出。这些工具通过优化BIM模型的加载和显示效率,为工程人员提供了更为便捷的操作体验。 文章深入介绍了Three.js技术,它是实现BIM轻量化的一个关键技术。Three.js作为一个开源的WebGL库,使得在浏览器中进行3D渲染成为可能,它的轻量级特性和灵活的接口对BIM轻量化起到了极大的推动作用。文章详细解析了revit软件的分类结构和编码规则,这对于理解BIM模型的组织方式和数据构成至关重要。文章还涉及了revit插件开发的环境搭建步骤和如何高效地从revit中提取所需数据。 紧接着,文章重点介绍了GLTF格式的优势和其在revit中的导出实现。GLTF(GL Transmission Format)是一种开放标准的3D传输格式,它支持将3D模型直接传输到Web应用程序中,无需任何插件。GLTF格式文件的定义、结构以及导出步骤在这部分得到了全面的阐述,为BIM模型的Web化和轻量化提供了直接的技术支持。 除了介绍技术本身,文章还提出了一些模型优化的实用方法,比如利用Draco压缩算法。通过这种压缩技术,可以有效地减小模型文件的大小,而不损失太多的视觉和几何细节,这对于提升模型在网络中的传输效率至关重要。 本文不仅从技术层面详细介绍了BIM轻量化和GLTF导出的流程,而且为相关领域的技术人员提供了实践中的操作指南,无论是对于BIM初学者还是有经验的工程师,都是一份宝贵的学习和参考资料。
2026-01-22 18:59:51 17KB 软件开发 源码
1
内容概要:SM7算法由中国国家密码管理局于2012年公布,是国产密码算法系列之一,旨在提供高安全性、低计算复杂度的数据加密服务。它遵循GB/T 33928-2017标准,采用128位分组长度和密钥长度,经过11轮加密/解密。核心结构基于线性反馈移位寄存器和仿射变换,包括初始轮密钥扩展、字节代换、行移位、列混淆和轮密钥加等步骤。S-Box表用于非线性替换,基于有限域GF(2^8)的仿射变换,增强了抗差分分析能力。SM7具有良好的抗攻击性和轻量化特点,适用于物联网通信、移动支付和身份认证等场景。; 适合人群:从事信息安全、密码学研究或开发的人员,特别是关注国产密码算法的研究者和技术开发者。; 使用场景及目标:①物联网通信中设备间数据加密;②移动支付交易信息的机密性与完整性保护;③用户身份凭证的安全存储与传输。; 阅读建议:读者应重点关注SM7算法的设计目标、核心结构及其安全特性,了解其相对于其他算法的优势,特别是在资源受限环境下的应用。同时,建议参考提供的优化建议,以更好地理解和实现该算法。
1
卷积神经网络(Convolutional Neural Networks, CNNs 或 ConvNets)是一类深度神经网络,特别擅长处理图像相关的机器学习和深度学习任务。它们的名称来源于网络中使用了一种叫做卷积的数学运算。以下是卷积神经网络的一些关键组件和特性: 卷积层(Convolutional Layer): 卷积层是CNN的核心组件。它们通过一组可学习的滤波器(或称为卷积核、卷积器)在输入图像(或上一层的输出特征图)上滑动来工作。 滤波器和图像之间的卷积操作生成输出特征图,该特征图反映了滤波器所捕捉的局部图像特性(如边缘、角点等)。 通过使用多个滤波器,卷积层可以提取输入图像中的多种特征。 激活函数(Activation Function): 在卷积操作之后,通常会应用一个激活函数(如ReLU、Sigmoid或tanh)来增加网络的非线性。 池化层(Pooling Layer): 池化层通常位于卷积层之后,用于降低特征图的维度(空间尺寸),减少计算量和参数数量,同时保持特征的空间层次结构。 常见的池化操作包括最大池化(Max Pooling)和平均池化(Average Pooling)。 全连接层(Fully Connected Layer): 在CNN的末端,通常会有几层全连接层(也称为密集层或线性层)。这些层中的每个神经元都与前一层的所有神经元连接。 全连接层通常用于对提取的特征进行分类或回归。 训练过程: CNN的训练过程与其他深度学习模型类似,通过反向传播算法和梯度下降(或其变种)来优化网络参数(如滤波器权重和偏置)。 训练数据通常被分为多个批次(mini-batches),并在每个批次上迭代更新网络参数。 应用: CNN在计算机视觉领域有着广泛的应用,包括图像分类、目标检测、图像分割、人脸识别等。 它们也已被扩展到处理其他类型的数据,如文本(通过卷积一维序列)和音频(通过卷积时间序列)。 随着深度学习技术的发展,卷积神经网络的结构和设计也在不断演变,出现了许多新的变体和改进,如残差网络(ResNet)、深度卷积生成对抗网络(DCGAN)等。
2025-12-29 16:43:02 5KB
1
PS轻量化安装包仅277MB,解决了对图片处理软件简单需求的用户问题。该安装包具有轻量化的特性,意味着它在保证基本功能的同时,对系统的资源占用较小,适合对内存和处理器要求不高的普通用户使用。作为Adobe公司著名的图像处理软件Photoshop的轻量化版本,它依然保持了PS的核心图像编辑功能,如图层、滤镜、裁剪等,可以让用户进行图片的基本编辑工作。 由于其安装包体积小,仅为277MB,用户在下载和安装时会更加便捷,尤其适合网络速度不快或者储存空间有限的用户。此外,该安装包还采用了绿色版本的形式,即无需复杂的安装过程,用户下载后即可直接使用,无须进行繁琐的配置安装步骤,大大提高了使用的便利性。 标签中提到的“图片处理”明确了软件的主要用途,即处理图片;“Ps”是Photoshop的简称,说明了软件的名称;“安装下载”则指出了用户获取该软件的途径,即通过下载安装包进行安装。这些标签有助于用户快速识别软件的功能和使用方式,同时也便于在搜索时找到这款软件。 在文件名称列表中,“Adobe Photoshop CC (64 Bit)”说明了这个安装包是针对64位操作系统的版本。64位系统在处理大型文件和运行内存密集型应用时具有性能优势,可以更加高效地运行Photoshop。用户在安装时应注意系统的位数,以确保软件的兼容性和最佳性能。 这种轻量化的安装包为那些不需要Photoshop全部高级功能的用户提供了方便,它可能不包含如3D建模、高级视频编辑等高级功能,但对于日常的图片编辑需求已经足够。用户可以使用它完成照片的简单美化、拼图、加字等操作,而无需安装占用资源较大的完整版Photoshop,从而节省了电脑资源,提高了工作效率。 对于图像处理专业人士和需要执行复杂操作的用户来说,完整版Photoshop提供了更加强大和全面的工具,但这对于只是偶尔需要处理图片的普通用户来说,可能并不是必需的。轻量化安装包的推出,正是为了满足这部分用户的需求,使他们能够以最小的代价享受到Photoshop的基本功能,同时也为想要体验Photoshop魅力的新用户降低了入门门槛。 PS轻量化安装包以其小巧的体积和便利的使用方式,为图像处理领域带来了一种全新的选择。它不仅让软件的安装和使用变得更为轻松,还为那些对电脑性能有特殊需求的用户提供了满意的解决方案。
2025-12-03 15:30:56 227.95MB 图片处理 安装下载
1
内容概要:本文详细介绍了在Zynq7020平台上实现轻量化YOLO CNN加速器的过程。作者首先解释了选择FPGA进行AI硬件加速的原因,强调了FPGA的灵活性和高效性。接着,文章深入探讨了硬件架构设计,包括输入层、卷积层、激活层、池化层和全连接层的具体实现方法。此外,还讨论了软件实现部分,展示了如何使用TensorFlow训练轻量化的YOLO模型,并将其转换为适用于FPGA的二进制文件。性能测试结果显示,该加速器能够达到每秒30帧的检测速度,资源利用率低,功耗显著降低。最后,作者展望了未来的研究方向和技术改进。 适合人群:对FPGA和深度学习感兴趣的工程师、研究人员,尤其是那些希望了解如何在嵌入式设备上实现高效AI加速的人群。 使用场景及目标:①理解FPGA在AI硬件加速中的应用;②掌握轻量化YOLO模型的设计与实现;③学习如何优化硬件架构以提高性能和降低功耗。 其他说明:文中提供了详细的代码片段和配置参数,帮助读者更好地理解和复制实验结果。同时,作者分享了许多实践经验,包括遇到的问题及其解决方案。
2025-11-25 14:03:22 232KB
1
全新轻量化PHP网盘搜索引擎系统源码 基于PHP+MYSQL开发 一、多样筛选功能:网站支持5类筛选功能,包括默认搜索、网盘类型、文件大小、时间排序以及网盘来源,让用户能够轻松快速地找到所需资源,大大提高搜索效率。 二、精准图标适配:每种类型的文件在左侧都有与之兼容的精美图标。文件夹对应文件夹图标,视频显示视频图标等,界面整洁直观,方便用户一眼识别文件类型。 三、流畅前端体验:前端内容界面采用骨架屏预加载显示技术,优化用户等待过程,使内容展示更加平滑迅速,让用户在浏览时享受更友好的视觉感受。 四、贴心交互设计:1页展示10条内容,页面布局合理。最右侧设置一键返回顶部按钮,方便用户快速回到页面顶部。搜索框采用响应式设计,可根据不同设备屏幕自适应调整,同时支持一键清除筛选内容,操作便捷。 网站后台功能强大且完善:支持CSV表格导入内容,实现批量高效管理;具备手动添加资源功能,方便随时更新;用户密码更改操作简单便捷,保障账户安全;还提供网站SEO设置,助力网站在搜索引擎中获得更好的曝光和排名。这是一款功能全面、设计精良的网站源码,无论是个人使用还是团队协作,都能满足您的多样化需求,让您的网站运营管理更加轻松高效。
2025-09-30 22:03:56 14MB
1
在当前人工智能和深度学习领域,卷积神经网络(CNN)已成为核心算法之一,尤其在图像识别与处理方面表现出色。YOLO(You Only Look Once)模型是一种先进的实时目标检测系统,能够快速准确地识别图像中的多个对象。然而,传统基于CPU和GPU的实现方式在处理能力、功耗以及延迟等方面存在局限性。为了克服这些挑战,研究者们开始探索基于FPGA(现场可编程门阵列)的解决方案,以期实现高性能、低功耗的CNN加速器。 FPGA是一种可以通过编程重新配置的半导体设备,它通过硬件描述语言来定义硬件逻辑功能,使得FPGA具备了极高的灵活性和效率。在深度学习加速领域,FPGA相较于传统CPU和GPU具有一定的优势,比如更低的功耗和更高的并行处理能力,使得FPGA成为加速深度学习模型的热门选择。 基于zynq7020平台的FPGA实现,提供了一个集成ARM处理器和FPGA逻辑单元的系统级芯片解决方案。zynq7020平台的灵活性使得可以将CNN的算法部分部署在FPGA逻辑上,而控制逻辑则运行在集成的ARM处理器上。这样的设计既可以保证算法的高效执行,又可以利用ARM处理器进行必要的控制和预处理工作。 本研究的目标是实现一个类YOLO的轻量级CNN加速器,并在zynq7020平台上进行了验证。轻量化设计意味着在保证检测准确率的前提下,减少模型的复杂性和计算量,这有利于降低功耗和提高处理速度。在实际应用中,该加速器能够有效执行物品检测和特定识别任务,为实时视频监控、智能交通和机器人视觉等领域提供了强有力的硬件支持。 文档列表中提到的“现场可编程门阵列是一种可重新配置”部分,强调了FPGA能够适应不同应用需求的特性。而“基于实现了类的轻量化的加速器为了方便直接基于”和“基于实现了类的轻量化的加速器为了方便直”等文件名片段,则暗示了本研究是直接针对某个具体的轻量级CNN模型进行实现和优化。 除了基本的CNN模型实现之外,FPGA实现架构还包括了对算法的深度探索,应用案例分析,以及对实现与优化方面的研究。这些文档资料可能详细阐述了如何在FPGA上优化CNN模型,包括并行处理技术、流水线设计、资源分配策略等,这些都是实现高性能加速器的关键技术点。 基于FPGA的轻量级CNN加速器在处理速度和能效方面展现出巨大潜力,尤其在实时处理和功耗受限的应用场景中具有明显优势。随着硬件设计和优化技术的进步,以及深度学习算法的不断演化,我们可以预见FPGA将在人工智能硬件加速领域发挥更加重要的作用。
2025-05-06 14:03:55 85KB fpga开发
1
标题中的“一个轻量化,Sora部分模型代码开源”揭示了这个项目的核心——Sora模型的部分源代码已经公开,旨在提供一个轻量级的解决方案。Sora可能是一个专注于效率和性能的深度学习模型,它的开源使得研究者和开发者能够更好地理解和利用这种技术。 描述中的“Sora采用了扩散型变换器(diffusion transformer)架构”提到了Sora模型所采用的独特算法。扩散型变换器是一种基于深度学习的架构,其工作原理是通过逐步消除或“扩散”随机噪声来恢复或生成数据。这种方法在图像生成、语音合成等领域表现出色,因为它可以捕捉到数据的复杂结构和细节,同时保持计算效率。相比于传统的自注意力机制,扩散型变换器可能在处理大规模数据时更为高效,且能处理序列的长期依赖性。 “深度学习”和“AI”这两个标签进一步强调了Sora模型的背景。深度学习是人工智能的一个子领域,它通过多层神经网络对大量数据进行学习,以实现模式识别和决策制定。Sora模型利用深度学习的能力,特别是通过扩散型变换器,来解决特定的AI问题,可能是图像生成、自然语言处理、音频处理等。 在“sora-master”这个压缩文件名中,我们可以推断这是Sora项目的主分支或主要版本,通常包含模型的源代码、训练脚本、数据集处理工具以及可能的预训练模型权重。对于希望了解Sora模型工作原理或希望在自己的项目中应用Sora的人来说,这是一个宝贵的资源。 综合以上信息,我们可以总结出以下知识点: 1. Sora是一个轻量级的深度学习模型,采用了扩散型变换器架构。 2. 扩散型变换器是一种处理随机噪声的方法,适用于复杂数据结构的恢复和生成。 3. Sora模型可能被用于图像生成、语音合成或其它与序列数据处理相关的AI任务。 4. 开源的Sora模型代码提供了研究和开发的基础,用户可以对其进行修改和优化以适应自己的需求。 5. “sora-master”压缩文件包含Sora模型的主要代码和资源,有助于用户理解和使用Sora模型。
2024-09-29 09:59:34 1.73MB Sora 深度学习 AI
1
在当前的深度学习领域,轻量化模型已经成为了一个重要的研究方向,尤其在移动设备和嵌入式系统的应用中。本文将探讨轻量化网络的背景、设计思路以及以MobileNet为例的具体实现,来阐述这一领域的核心概念。 首先,让我们理解为什么需要轻量化网络。神经网络的发展历程见证了模型从简单的前馈网络到复杂的深度结构的演变,如AlexNet、VGG、GoogLeNet、ResNet等。这些模型虽然在准确率上取得了显著的进步,但它们的计算量和参数数量巨大,对硬件资源的要求较高,这限制了它们在资源受限的环境(如智能手机、无人机、物联网设备)中的应用。因此,轻量化网络的必要性应运而生,旨在在保持一定性能的前提下,降低模型的计算复杂度和内存占用,以适应这些边缘计算场景。 实现轻量化网络的主要思路有多种。一种方法是压缩已经训练好的模型,通过知识蒸馏、权值量化、剪枝和注意力迁移等技术减小模型规模。另一种是直接设计轻量化架构,例如SqueezeNet、MobileNet、ShuffleNet和EfficientNet,它们通过创新的卷积结构来减少计算量。此外,还可以通过优化卷积运算,如使用Im2col+CEMM、Winograd算法或低秩分解来提高运算效率。硬件层面的支持也不可忽视,例如TensorRT、Jetson、Tensorflow-lite和Openvino等工具可以加速模型在不同平台上的部署。 MobileNet系列作为轻量化模型的代表,尤其是其深度可分离卷积的设计,极大地降低了计算成本。传统卷积涉及到大量的乘加运算,而深度可分离卷积将卷积过程分为两步:先进行深度卷积(即按通道的卷积),然后进行逐点卷积。这样,深度可分离卷积的计算量仅为标准卷积的很小一部分,同时减少了参数量。以MobileNet V1为例,尽管其参数量远小于其他大型网络,但在没有残差连接和ReLU激活函数的低精度问题下,其性能仍有所局限。为了解决这些问题,MobileNet V2引入了倒置残差块,增强了特征流动,提高了模型性能。 总结来说,轻量化网络的发展是深度学习在有限资源环境应用的关键。通过深入理解神经网络的结构,设计创新的卷积操作,结合模型压缩技术和硬件优化,我们能够构建出在保持高效率的同时兼顾准确性的模型。MobileNet的成功实践为未来轻量化模型的设计提供了宝贵的启示,进一步推动了深度学习在边缘计算领域的广泛应用。
2024-06-24 20:00:51 6.85MB 深度学习
1