大规模语言模型:从理论到实践 (张奇,桂韬,郑锐,⻩萱菁) (Z-Library)
2024-11-30 18:02:47 26.35MB
1
【内容摘要】这套NLP资源着重于词向量表示与语言模型的相关理论与实践,内含详尽的PPT教学课件和实战代码示例。 【适用人群】主要为对自然语言处理技术感兴趣的学生、教师、研究者以及相关领域的开发者,尤其适合初学者深化理解和进阶者提升技能。 【适用场景】包括但不限于机器翻译、情感分析、语义搜索、聊天机器人开发等领域。资源的目标是帮助用户掌握词向量的构建原理(如Word2Vec、GloVe等),理解并应用语言模型(如n-gram、RNN、Transformer等)进行文本生成与预测任务,从而全面提升其在NLP项目中的问题解决能力和技术研发实力。
2024-09-29 10:09:39 2.95MB 自然语言处理 语言模型
1
大型语言模型(LLM)是深度学习领域的重要组成部分,专门设计用于处理自然语言处理(NLP)任务。这些模型基于深度神经网络,尤其是转换器架构,能够理解和生成文本,涵盖了从简单的语言识别到复杂的语义理解等多个方面。在本文中,我们将深入探讨LLM的定义、工作原理、训练过程及其广泛应用。 大型语言模型是通过海量数据训练出的超大规模深度学习模型。它们使用多层的转换器模型,这些模型由编码器和解码器构成,具备自注意力机制,能捕捉到文本中的上下文信息和词汇关系。与传统的循环神经网络(RNN)不同,转换器可以并行处理输入序列,提高了训练效率,尤其在利用GPU加速时效果显著。 LLM的运作依赖于单词的向量化表示,即单词嵌入,使得具有相似意义或上下文关系的单词在高维空间中靠近,便于模型理解。在训练阶段,模型通过无监督学习,学习词汇的意义和上下文,然后通过微调适应特定任务,如翻译、问答等。微调和提示调优是两种策略,前者针对特定任务优化模型性能,后者则可能在无样本或少量样本的情况下让模型理解任务指令。 训练大型语言模型通常涉及两个主要阶段:训练和推理。训练时,模型会经历前向传播和反向传播,以更新权重和偏差;而在推理阶段,仅进行前向传播以生成预测。模型的参数数量巨大,代表了模型学习到的知识库,这使得它们能够在医疗、金融、娱乐等领域实现多种NLP应用,如翻译、聊天机器人、AI助手等。 训练大型语言模型通常需要庞大的文本数据集,如维基百科或GitHub上的内容,包含数以万亿计的单词。这些数据的质量直接影响模型的性能。训练过程中,模型会自我学习,理解词汇的含义和语境,例如学会区分“right”作为“正确”和“右”的含义。微调阶段,模型会针对特定任务(如情感分析)进行调整,通过示例或无示例的提示来教会模型执行任务。 总结来说,大型语言模型是深度学习在自然语言处理领域的革命性成果,它们通过大规模训练和微调,能够理解并生成复杂的文本,为众多应用场景提供了强大的支持。随着技术的发展,我们可以期待未来LLM在更多领域展现出更智能的表现。
2024-08-20 15:20:50 521KB 语言模型
1
ChatGPT 语言模型选择与预训练方法 在自然语言处理领域,ChatGPT 技术的语言模型选择与预训练方法是生成流畅、连贯且富有逻辑的对话的关键。选择合适的语言模型和预训练方法能够提升对话生成的质量和准确性。 一、语言模型的选择 传统的语言模型基于统计方法,如 n-gram 模型和隐马尔可夫模型。然而,这些模型往往无法捕捉到长距离依赖和上下文之间的复杂关系,从而导致生成的对话内容缺乏连贯性和准确性。基于深度学习的语言模型,如循环神经网络(RNN)和Transformer 模型,具有更好的表达能力和建模能力,能够更好地解决这个问题。 在选择语言模型时,一个重要的考虑因素是模型的规模和参数数量。通常情况下,模型规模越大、参数越多,其生成的对话结果往往质量更高,但同时也会增加计算资源和训练时间的需求。 二、预训练方法的选择 现有的预训练方法主要分为基于无监督学习和基于有监督学习两种。基于无监督学习的方法通常通过预测下一个词或下一个句子来构建语言模型,如 Word2Vec 和 BERT。这些方法能够学习到词语之间的语义和句子之间的关系,但在生成对话时可能会出现内容不准确或不连贯的问题。 基于有监督学习的方法则需要大量的标注数据来辅助模型的训练。这种方法能够更好地控制生成的对话内容,但同时也面临着数据获取的难题。 近年来,还涌现出一种结合无监督学习和有监督学习的预训练方法,即自监督学习。自监督学习通过设计合理的训练目标来进行预训练,然后再通过微调等方法进行有监督学习。这种方法能够在一定程度上兼顾无监督学习和有监督学习的优点,提升预训练模型的性能。 三、ChatGPT 应用的挑战 除了语言模型选择和预训练方法,ChatGPT 的应用和推广也面临着一些挑战。例如,对话的多样性和个性化是一个重要的考虑因素。传统的 ChatGPT 模型往往倾向于生成过于保守和平庸的对话内容,缺乏新颖性和个性化。 如何在保持语言模型的连贯性的同时,增加对话的多样性和个性化,是一个需要进一步研究和探索的问题。在总结中,ChatGPT 技术的语言模型选择和预训练方法对于生成流畅、连贯且富有逻辑的对话至关重要。选择合适的语言模型和预训练方法能够提升对话生成的质量和准确性。 四、总结 ChatGPT 技术的发展离不开对语言模型和预训练方法的不断研究和改进,希望未来能够在此方向上取得更多突破。选择合适的语言模型和预训练方法能够提升对话生成的质量和准确性,同时还需关注对话的多样性和个性化,在实际应用中提供更好的用户体验。
2024-08-14 17:47:51 37KB
1
ChatGPT是一种基于自然语言处理和深度学习技术的聊天机器人,它可以模拟人类的语言行为,与用户进行自然、流畅、富有逻辑的对话。ChatGPT的优点在于它可以快速地进行训练和部署,适用于各种不同的应用场景,如在线客服、智能助手、教育领域等。以下是ChatGPT的一些特点和优势: 基于GPT技术:ChatGPT是基于著名的语言模型GPT(Generative Pre-training Transformer)技术开发的,GPT技术可以让ChatGPT具有更强的语言理解和生成能力,从而实现更加自然、流畅的对话效果。 可扩展性强:ChatGPT可以通过增加训练数据和改变模型结构来实现更好的性能,同时也支持多语言的处理,可以适应不同语言和文化背景的用户需求。 可定制化:ChatGPT可以基于不同的应用场景和需求进行定制,通过人工干预和调参来提高模型的准确性和效率,从而实现更好的用户体验。 智能化:ChatGPT可以通过学习用户的行为和偏好来优化对话,从而实现更加智能化的对话效果,满足用户的个性化需求。
1
"通向AGI之路:大型语言模型(LLM)技术精要" 大型语言模型(LLM)技术精要是当前人工智能(AI)领域的热点话题。随着ChatGPT等大型语言模型的出现,人们开始关注LLM技术的发展前景和潜力。本文将从LLM技术的发展历程、技术精要和未来的发展趋势进行讨论。 一、大型语言模型(LLM)技术发展历程 LLM技术的发展可以追溯到Bert时代,但真正的技术跃迁来自GPT 3.0的出现。GPT 3.0不仅仅是一项具体的技术,更体现了LLM应该往何处去的发展理念。自此之后,国内的技术发展gap开始拉大,ChatGPT只是这种发展理念差异的一个自然结果。 二、LLM技术精要 LLM技术的精要在于其能够学习和存储大量数据,并将其转化为有用的信息。LLM可以通过海量数据学习到知识,并将其存储在模型中。随着LLM规模逐步增大,会带来一些影响,如模型的计算复杂度增加和数据存储需求的增加。 三、In Context Learning和Instruct技术 In Context Learning是一种学习方法,它可以让LLM模型在特定上下文中学习和应用知识。Instruct技术是OpenAI推出的一个技术,可以让LLM模型更好地理解和执行指令。In Context Learning和Instruct技术的结合将使LLM模型的能力更加强大。 四、LLM的推理能力和思维链CoT LLM模型具备推理能力,可以通过思维链CoT来实现。思维链CoT是一种基于LLM模型的推理方法,可以让模型更好地理解和推理问题。 五、未来发展趋势 LLM技术的未来发展趋势将是更加强大和智能的模型。随着LLM规模的增加,模型的能力将更加强大,可能会带来一些影响,如模型的计算复杂度增加和数据存储需求的增加。 LLM技术精要在于其能够学习和存储大量数据,并将其转化为有用的信息。LLM技术的未来发展趋势将是更加强大和智能的模型,为人类带来更多的便捷和价值。
2024-06-23 02:32:29 8.49MB 语言模型
1
OpenAI发布了他们的ChatGPT新机器学习模型GPT-4。GPT-4是GPT-3的一大进步,GPT-3是当前ChatGPT免费版本(GPT 3.5 Turbo)所运行的模型的基础,今天我们也来凑个热点,研究一下它们的定价 GPT-4新的功能 GPT-4可以在对话中使用图像,并可以回答有关图像的问题。前还没有官方确认除了用户输入之外,聊天机器人是否可以输出图像。 使用GPT-4可以抓取网站链接:发送一个链接,他就可以自动抓取内容,并不需要复制粘贴来发送网站的内容。 GPT-3每个请求的字数限制在3000字左右。GPT-4将这一限制大幅提高到2.5万字。这样,语言模型将能够在更好的上下文环境下进行更长的对话,这将提高它在特定上下文中回答的准确性和精确性。 测试指标明显提高:GPT-4训练的数据量比GPT-3大得多,所以GPT-4有更多的知识是有道理的,所以他在各种测试中得到更好的指标也是理所当然。 以上这些就是一些GPT-4新的功能,这个大家应该都看过好几遍了,下面我们来进行另外一个视角的对比 GPT-4 API定价分析 GPT-4 API的模型被命名为GPT-4 - 0314。要通
2024-06-06 15:37:43 674KB 语言模型 AI 人工智能 自然语言处理
1
面向知识图谱和大语言模型的因果关系推断综述.pdf
2024-06-05 14:51:21 7.23MB
1
大模型入门学习笔记.zip 大模型入门学习(主要基于DataWhale组织的学习任务) ## Task 01 梳理了语言模型的进化史。 ## Task 02 这一节主要是讲述大模型的能力,通过一些任务来探索,这里我整理了prompt的范式,包括一个范例,另外整理了langchain介绍,包括一些langchain示例。 ## Task 03 这一部分主要整理了ChatGPT的原理,包括ChatGPT训练的三个阶段,目前这部分仅是简单叙述,接下来会对具体的技术细节进行总结。 ## Task 04 这一部分主要梳理了GPT的进化史,从GPT-1到GPT-3,从数据、模型、训练方式有了一个大致的了解。 ## Task 05 这一部分整理了ChatGPT从零开始的训练流程,主要包括预训练、指令微调、奖励模型三个阶段。
2024-05-31 15:34:36 1.57MB 语言模型
1
大型语言模型的快速介绍.pptx
2024-05-23 19:35:39 3.84MB 语言模型
1