牵牛星8800 这是第一台微型计算机MITS Altair 8800的非常简单的仿真器。 主要目标是能够在其上运行MITS BASIC 4K 3.2的原始图像,该图像现在可以正常运行。 该仿真器没有GUI,前面板指示灯,开关等。它使用用户终端,因为它是通过串行线物理连接到Altair的。 这就是为什么目前需要具有VT100转义序列支持的终端仿真器的原因(因此它可能无法在Windows下运行,但是谁在乎...) 建立和运行 您需要Maven来构建它: $ mvn package 运行: $ ./run.sh 它将BASIC加载到内存中并开始执行它。 样本输出: MEMORY SIZE? 4096 TERMINAL WIDTH? 40 WANT SIN? Y 726 BYTES FREE BASIC VERSION 3.2 [4K VERSION] OK PRINT "HELLO,
2026-02-10 03:12:20 46KB Java
1
竞拍系统源码 java 频谱拍卖测试套件 (SATS) SATS 是一个通用的“频谱拍卖测试套件”。 SATS 包含七个用于频谱拍卖的价值模型(有些是程式化的,有些是现实的)。 SATS 软件为每个价值模型提供拍卖实例生成器,即,它允许用户为任何频谱价值模型生成任意数量的拍卖实例。 对于其中的四个模型,SATS 还包含一个用于确定获胜者问题的 MIP 公式,它使用户能够快速找到拍卖的有效分配(并且不受 CATS [Leyton-Brown等,2000])。 有关SATS 以及将SATS 作为Web 服务运行的能力的更多信息,请访问SATS 网页。 引文 SATS 是在 和 之间开发的。 该系统在以下论文中有详细描述: SATS:通用频谱拍卖测试套件Michael Weiss、Benjamin Lubin 和 Sven Seuken。 2017 年 5 月在巴西圣保罗举行的第 16 届自治代理和多代理系统国际会议 (AAMAS) 的论文集。 [] 如果您将此软件用于学术目的,请在您的工作中引用上述内容。 本次参考的Bibtex如下: @inproceedings{weiss2017sat
2026-01-26 13:12:08 2.99MB 系统开源
1
后量子密码学(Post-Quantum Cryptography,PQC)是近年来信息安全领域的重要研究方向,主要是为了应对量子计算机带来的潜在威胁。随着量子计算技术的发展,现有的基于数学难题的经典加密算法,如RSA、AES等,可能会被强大的量子计算机轻易破解。因此,后量子密码学旨在寻找并设计能在量子计算机面前保持安全性的加密算法。 本项目"post-quantum"是一个专注于后量子算法的Java实现集合。使用Java编程语言意味着这些算法可以在各种平台和系统上运行,得益于Java的“一次编写,到处运行”特性。Java是一种广泛使用的面向对象的编程语言,具有高效性、跨平台兼容性和丰富的库支持,这使得它成为实现复杂密码学算法的理想选择。 在项目中,你可能会找到以下类型的后量子算法: 1. **公钥加密算法**:如Learning with Errors (LWE) 和Ring-LWE,它们是基于错误学习问题的,提供与RSA和ElGamal类似的功能,但在量子环境下更安全。 2. **数字签名算法**:比如基于编码理论的McEliece签名,以及基于格理论的SIDH(Supersingular Isogeny Diffie-Hellman)签名。这些签名方案在抵御量子攻击时展现出优越的安全性。 3. **密钥交换协议**:如基于格的NTRU和Dilithium,这些协议允许两个通信方在不安全的通道上安全地建立共享密钥,即使面临量子计算的挑战。 4. **哈希函数**:虽然哈希函数通常不受量子计算的直接影响,但后量子密码学也可能会研究适应量子时代的改进哈希函数,以确保整个加密系统的安全性。 这个项目可能包括了这些算法的详细实现,以及相关的测试用例和性能评估。开发者可以通过阅读源代码来理解这些算法的工作原理,同时可以将其集成到自己的应用中,以提前为量子计算时代的安全做好准备。 为了深入了解这个项目,你需要对Java编程有扎实的基础,同时也需要对密码学的基本概念有一定的了解,例如公钥密码学、数字签名、密钥交换等。此外,掌握量子计算的基本原理,如Shor's算法,将有助于理解为什么这些后量子算法是必要的。 在使用这些算法时,要注意其性能开销,因为后量子算法通常比经典算法更复杂,可能需要更多的计算资源。在实际部署前,进行充分的性能测试和安全性评估是非常重要的。 "post-quantum"项目为Java开发者提供了一个研究和实践后量子密码学的宝贵资源,对于那些关注未来信息安全的人来说,这是一个值得深入研究的领域。通过学习和理解这些算法,我们可以为即将到来的量子时代做好准备,确保数据和通信的持续安全。
2025-11-17 15:28:28 17KB Java
1
"Automated Key Presser:用Java编写的自动按键-开源" 自动按键程序是一种实用工具,它允许用户通过编程方式模拟键盘输入。在这个特定的项目中,开发者使用Java编程语言创建了一个开源的自动按键工具,即"Automated Key Presser (AKP)"。Java是一种广泛使用的、跨平台的语言,它的强类型和面向对象特性使其非常适合开发这种类型的系统。 "这是自动按键。 它表示按下键盘上的任何键。 仿佛你坐在那里,自己压他们。" 自动按键工具的主要功能是模拟用户的键盘输入,可以用于各种场景。例如,在游戏自动化、数据录入、测试脚本编写等方面,它可以节省用户的时间和精力。AKP能够模拟按下键盘上的任意键,这意味着用户可以通过编写简单的指令或配置文件,让程序按照预设的顺序和频率自动执行按键操作。这使得用户仿佛亲自坐在那里操作,但实际上是由程序自动完成。 【知识点】 1. **Java编程**:作为自动按键工具的基础,Java是一种通用的、高性能的编程语言,具有良好的可移植性("Write Once, Run Anywhere")。它的类库丰富,适合构建桌面应用。 2. **事件驱动编程**:自动按键工具通常基于事件驱动模型,监听键盘事件并触发相应的按键动作。Java中的`java.awt.Robot`类可以用于模拟键盘和鼠标操作。 3. **多线程**:为了实现按键的异步执行和更复杂的控制逻辑,可能需要使用Java的多线程功能,如`Thread`或`Runnable`接口。 4. **用户界面**(UI)设计:一个用户友好的界面可以让用户方便地配置和启动自动按键任务。Java提供了丰富的GUI库,如`javax.swing`和`javafx`,可用于构建这样的界面。 5. **配置文件**:自动按键的序列和间隔可能存储在配置文件中,例如XML或JSON格式,这样用户无需编程就能自定义按键行为。 6. **开源软件**:AKP是开源的,意味着源代码对公众开放,任何人都可以查看、学习、修改和分发。开源软件促进了社区协作和持续改进,用户也可以根据需求对其进行定制。 7. **版本控制**:开源项目通常使用Git等版本控制系统进行代码管理,用户可以通过GitHub或其他代码托管平台获取和贡献代码。 8. **许可证**:作为一个开源项目,AKP会遵循一定的开源许可证,如MIT、Apache 2.0或GPL,规定了代码的使用、修改和分发的规则。 9. **文档与示例**:良好的开源项目会提供详尽的文档,包括安装指南、API参考和使用示例,帮助用户理解和使用AKP。 10. **社区支持**:开源项目通常有活跃的社区,用户可以通过论坛、邮件列表或在线聊天室寻求帮助,共享解决方案,甚至参与项目的开发。 "Automated Key Presser"是一个使用Java编写的开源自动按键工具,它提供了模拟键盘输入的功能,适用于多种场景,并且由于其开源性质,鼓励社区的参与和改进。
2025-08-09 17:20:45 49KB 开源软件
1
在IT行业中,SFTP(Secure File Transfer Protocol)是一种安全的文件传输协议,它允许用户在不安全的网络环境中安全地传输文件。SFTP是SSH(Secure Shell)的一部分,提供了加密的网络通信,确保数据在传输过程中的安全性。本实例源码是基于Java实现的SFTP客户端,用于连接到支持SFTP的服务器并执行文件操作,如上传、下载和管理文件。 Java作为一种广泛使用的编程语言,拥有丰富的库和工具支持各种网络通信,包括SFTP。在Java中实现SFTP功能,通常会使用JSch库,这是一个Java实现的SSH2库,提供了解析、建立和维护SSH2连接的能力,包括SFTP子系统。 以下是一些关键的Java SFTP知识点: 1. **JSch库**:JSch是Java中实现SFTP的主要库,它允许开发者创建SSH连接,进行身份验证,并通过SFTP通道执行文件操作。安装JSch库后,可以导入其对应的jar文件到项目中,例如`jsch-0.1.55.jar`。 2. **连接SFTP服务器**:使用JSch,首先需要创建一个`JSch`对象,然后通过`Session`类建立到SFTP服务器的连接。这通常涉及设置主机名、端口、用户名和密码(或私钥)。 3. **身份验证**:JSch支持多种身份验证方式,包括密码认证、公钥认证(RSA/DSA/ECDSA等)。密码认证直接提供用户名和密码,而公钥认证则需要提供私钥文件路径和对应密码(如果设置了密码保护)。 4. **建立SFTP会话**:成功连接后,需要通过`Session`对象的`openChannel("sftp")`方法开启一个SFTP会话。这个会话对象代表了一个SFTP通道,可以进行文件操作。 5. **文件操作**:SFTP会话对象是一个`ChannelSftp`实例,提供了丰富的API进行文件操作,如`cd`改变目录,`ls`列出目录,`put`上传文件,`get`下载文件,`rm`删除文件,`mkdir`创建目录,`chmod`改变文件权限等。 6. **错误处理与资源关闭**:在进行SFTP操作时,需要注意异常处理,确保在网络问题、权限错误或其他异常情况下能正确关闭连接。同时,使用完`ChannelSftp`和`Session`对象后,应调用`disconnect()`方法断开连接。 7. **代码示例**:在提供的源码中,很可能包含了建立连接、身份验证、打开SFTP通道、进行文件操作和关闭连接的完整流程。通过阅读和学习这些源码,你可以更深入地理解如何在Java中实现SFTP功能。 8. **应用领域**:Java实现的SFTP客户端适用于各种需要安全传输文件的场景,比如自动化部署、日志备份、数据同步等。由于Java的跨平台特性,这样的解决方案可以在Windows、Linux、Mac等多个操作系统上运行。 基于Java的SFTP代码实例可以帮助开发者更好地理解和运用SFTP协议,通过JSch库实现安全的文件传输功能。通过学习和实践这些源码,你可以提升自己的Java网络编程技能,为你的项目添加可靠的数据传输功能。
2025-07-09 18:56:19 61KB Java
1
LL1解析器是一种自顶向下的语法分析方法,主要用于编译器设计领域。它基于左递归和左公共因子消除的文法,是有限前缀(Lookahead of 1)的左递归文法(Leftmost Derivation in Leftmost Form)。在本项目中,我们讨论如何使用Java编程语言实现一个LL1解析器。 理解LL1解析器的工作原理至关重要。该解析器从输入符号串的起始符号开始,尝试匹配文法规则,每次分析一个输入符号,并根据当前的输入符号和栈顶的非终结符来决定下一步的操作。LL1解析器需要一个解析表,该表指示了对于每个非终结符和当前输入符号,应执行哪个产生式。这个表可以通过构造函数和文法的闭包计算得到。 在Java中实现LL1解析器,我们需要以下步骤: 1. **定义文法**:创建一个表示文法的类,包含非终结符、终结符、产生式等数据结构。例如,我们可以使用枚举来表示终结符,类或接口来表示非终结符,而产生式可以是一个包含非终结符和终结符的列表。 2. **消除左递归**:由于LL1解析器不支持直接左递归,我们需要先对文法进行转换,消除直接左递归。这通常涉及将直接左递归的规则改写为间接左递归。 3. **消除左公因子**:如果有多个产生式共享相同的开头,应消除它们的左公因子,以减少解析表的大小并提高效率。 4. **构造解析表**:使用文法规则生成LL1解析表。对于每个非终结符和可能的输入符号,确定应该应用哪个产生式。这涉及到计算每个非终结符的FIRST集(包含它可以开始的所有符号的集合)和FOLLOW集(在非终结符后面可能出现的符号集合)。 5. **编写解析函数**:基于构造的解析表,编写解析函数。此函数将输入符号与解析表进行比较,根据表中的指示执行相应的动作,如推入栈、匹配符号或执行产生式。 6. **错误处理**:当解析过程中遇到无法匹配的符号或者栈顶非终结符没有对应于当前输入符号的产生式时,应提供适当的错误处理机制。 7. **测试与调试**:编写单元测试以验证解析器是否按预期工作,检查各种输入字符串能否正确解析,以及在遇到语法错误时是否能正确报告。 在压缩包文件"LL1-master"中,可能包含了实现LL1解析器的源代码,包括文法定义、解析表生成、解析函数和测试用例。通过阅读和理解这些代码,你可以深入了解LL1解析器的实现细节,并学习如何在实际项目中应用这种技术。 LL1解析器的Java实现涉及文法的处理、解析表的构造和解析过程的控制。掌握这一技能有助于深入理解编译器的工作原理,并为编写更复杂的编译器组件奠定基础。通过实践和研究"LL1-master"项目,你可以获得宝贵的实践经验,提升自己的编程和编译技术。
2025-06-29 18:56:07 267KB Java
1
### Java编写的网络爬虫(Crawler/Spider)关键知识点解析 #### 一、网络爬虫(Crawler/Spider)概述 网络爬虫(Web Crawler),也称为网页蜘蛛、网络机器人等,是一种按照一定的规则自动抓取万维网信息的程序或者脚本。它通过模拟人类用户访问网站的方式,自动地、有序地对网页资源进行抓取,从而达到高效搜集数据的目的。 #### 二、Java网络爬虫实现的关键技术点 ##### 2.1 Java Applet环境搭建 在给定的源代码中,可以看到使用了`import java.applet.Applet;`来引入Applet类。Applet是早期Java用于浏览器环境的一种技术,虽然现在已不常用,但在这个场景下仍被用于构建图形界面。 ##### 2.2 GUI界面设计 - **布局管理**:代码中使用了`BorderLayout`和`FlowLayout`两种布局管理器。`BorderLayout`用于管理面板的主要布局,而`FlowLayout`则用于管理面板内部元素的布局。 - **组件添加**: - `TextField`用于输入起始URL。 - `Choice`用于选择搜索的内容类型,如HTML文档、音频文件等。 - `List`用于显示搜索结果。 ##### 2.3 多线程处理 - **Runnable接口实现**:`WebCrawler`类实现了`Runnable`接口,这意味着可以创建一个独立的线程来执行网络爬虫的操作,这有助于提高程序的响应速度和效率。 - **线程控制**:通过启动和停止线程来控制爬虫的运行状态。 ##### 2.4 网络请求与数据处理 - **HTTP请求发送**:虽然源代码片段中没有具体展示如何发送HTTP请求,但在实际的爬虫开发中,通常会使用Java的`HttpURLConnection`或第三方库如Apache HttpClient来发送请求。 - **数据解析**:获取到网页数据后,需要对其进行解析,提取出有用的信息。常用的解析方式包括正则表达式、DOM/SAX/XML解析器、HTML解析库如Jsoup等。 ##### 2.5 URL管理和去重 - **待搜索URL队列**:`Vector vectorToSearch`用于存储待搜索的URL列表。 - **已搜索URL队列**:`Vector vectorSearched`用于存储已经搜索过的URL列表,以避免重复爬取。 - **匹配URL队列**:`Vector vectorMatches`用于存储符合特定条件的URL列表。 ##### 2.6 状态监控与日志记录 - **状态显示**:`Label labelStatus`用于显示当前爬虫的状态,如正在搜索、已完成等。 - **异常处理**:虽然源代码片段中没有涉及具体的异常处理逻辑,但在实际开发中需要对可能出现的各种异常情况进行处理,并记录必要的日志信息,以便于后续的调试和维护。 #### 三、网络爬虫开发注意事项 - **合法性问题**:确保爬虫行为合法,尊重目标网站的robots.txt文件,避免对网站服务器造成过大压力。 - **性能优化**:合理设置并发数量,避免过多的并发导致服务器负载过高。 - **数据安全**:确保爬取的数据得到妥善处理,避免泄露敏感信息。 - **用户体验**:如果爬虫是作为用户界面应用的一部分,那么还需要考虑如何提高用户的交互体验。 Java网络爬虫的开发涉及到多个方面的技术和实践,不仅需要掌握基本的编程知识,还需要了解网络协议、多线程处理、GUI设计等相关领域的知识。通过对上述关键技术点的理解和应用,可以帮助开发者更好地构建高效、稳定的网络爬虫系统。
2025-05-29 11:22:58 11KB crawler spider 网络爬虫 java
1
在IT行业中,Thrift是一种高性能、可扩展的跨语言服务开发框架,由Facebook开源,现由Apache基金会维护。Thrift的主要目标是通过定义一种中间表示(IDL,接口定义语言)来构建可序列化数据结构和服务接口,使得不同编程语言之间可以进行高效、透明的通信。在本Java实现Thrift的Demo中,我们将深入理解Thrift的工作原理以及如何使用Java来实现它。 让我们了解Thrift的基本工作流程: 1. **接口定义**:使用Thrift IDL编写服务接口和数据类型。例如,你可以创建一个名为`Calculator`的服务,其中包含加、减、乘、除等方法,以及对应的请求和响应数据结构。 ```thrift service Calculator { i32 add(1:i32 num1, 2:i32 num2), i32 subtract(1:i32 num1, 2:i32 num2), i32 multiply(1:i32 num1, 2:i32 num2), i32 divide(1:i32 num1, 2:i32 num2) } ``` 2. **代码生成**:使用Thrift编译器将IDL文件转换为各种目标语言的源代码,包括Java。这会生成服务接口类(如`Calculator.java`)、协议处理类以及数据结构类。 3. **服务实现**:在Java中,你需要实现生成的服务接口。例如,创建一个`CalculatorServer`类,其中包含`Calculator`服务的所有方法的实现。 ```java public class CalculatorServer implements Calculator.Iface { @Override public int add(int num1, int num2) { return num1 + num2; } // 实现其他方法... } ``` 4. **服务器启动**:创建一个服务器实例,绑定到特定端口,并启动服务。通常会使用`TServer`抽象类的一个实现,如`TSimpleServer`或`TForkingServer`。 ```java TServerTransport serverTransport = new TServerSocket(9090); Calculator.Processor processor = new Calculator.Processor<>(new CalculatorServer()); TServer server = new TSimpleServer(serverTransport, processor); server.serve(); ``` 5. **客户端生成**:Thrift编译器同样会为客户端生成必要的代码。客户端可以使用这些类来创建服务的代理对象,与服务器进行通信。 6. **客户端调用**:在客户端代码中,创建一个`Calculator.Client`实例,连接到服务器,然后调用服务方法。 ```java TTransport transport = new TSocket("localhost", 9090); TProtocol protocol = new TBinaryProtocol(transport); Calculator.Client client = new Calculator.Client(protocol); transport.open(); int result = client.add(10, 20); transport.close(); System.out.println("Result: " + result); ``` 这个Java实现的Thrift Demo展示了如何利用Thrift进行跨语言通信。Thrift提供了一种高效的二进制序列化格式,使得数据在网络传输中占用更少的带宽,同时提供了丰富的服务接口定义,简化了多语言服务的开发。通过这种方式,开发者可以轻松地构建分布式系统,实现服务之间的高效通信。在实际应用中,Thrift常用于构建微服务架构,因为它能够很好地处理大规模、高性能的服务间通信需求。
2025-05-20 20:16:53 719KB java
1
在Java编程语言中,"左关联"和"右关联"是数据库查询操作中的概念,通常在SQL中使用JOIN语句实现。在这个场景下,我们讨论的是如何使用Java代码来模拟这些数据库操作,以达到高效、便捷地处理数据关联的目的。 让我们深入理解左关联(LEFT JOIN)和右关联(RIGHT JOIN)的概念。在SQL中,JOIN操作用于合并两个或更多表的数据,基于这些表之间的共同列。左关联返回所有左表(第一个表)的记录,即使在右表(第二个表)中没有匹配的记录。对于那些在右表中没有匹配的左表记录,结果将包含NULL值。右关联则相反,返回所有右表的记录,即使在左表中没有匹配的记录。 现在,当我们用Java实现这个功能时,我们可能需要设计一个类或者一组类,这些类能够处理数据结构(例如,使用List、Map或者其他集合框架中的类来表示数据表),并提供方法来进行左关联和右关联的操作。这通常涉及到迭代和比较数据,以找到匹配项,并填充结果集。 具体实现时,我们可以创建一个`JoinOperation`抽象类或接口,定义基本的JOIN操作。然后,分别为左关联和右关联创建`LeftJoin`和`RightJoin`类,它们都继承自`JoinOperation`。这两个类都需要处理两个输入数据集合,并根据指定的关联条件进行操作。 在`LeftJoin`类中,我们需要遍历左侧集合,对于每个元素,检查右侧集合中是否存在匹配项。如果存在,将两者结合;如果不存在,则保留左侧元素,并用NULL或自定义的占位符填充右侧对应字段。`RightJoin`类的逻辑类似,只是遍历和匹配的方向相反,优先考虑右侧集合的元素。 在设计此类解决方案时,可以考虑使用Java 8的Stream API,它提供了丰富的函数式编程工具,可以简化这种数据处理任务。例如,我们可以利用`filter()`、`flatMap()`和`map()`等方法,配合`Optional`类来实现关联操作,这样既提高了代码的可读性,又保持了效率。 为了确保关联效率,优化点可能包括: 1. 使用合适的数据结构:例如,使用HashMap或HashSet可以提供O(1)的时间复杂度进行查找,提高性能。 2. 预处理数据:对数据进行排序或预计算哈希,可以加速查找过程。 3. 并行处理:如果数据量大,可以使用Java的并发库并行化处理,利用多核CPU的优势。 从压缩包中的"source"文件来看,这可能是实现这些功能的源代码。通过查看和学习这些代码,我们可以更深入地了解具体实现细节,包括如何处理数据、如何定义关联条件,以及如何优化性能。 用Java编写左关联和右关联的类是一项涉及数据处理和集合操作的任务,需要理解数据库JOIN的基本概念,并运用Java编程技巧实现高效、灵活的解决方案。通过这样的实现,开发者可以在不依赖数据库的情况下完成数据关联,这对于离线数据分析或在内存计算环境中尤为有用。
2025-03-29 16:41:12 8KB java join
1
隧道 用 Java 编写的旧隧道
2024-10-23 10:11:07 8KB Java
1