使用Python进行MNIST手写数字识别 源代码与数据集 Python-Project-Handwritten-digit-recognizer MNIST 数据集 这可能是机器学习和深度学习爱好者中最受欢迎的数据集之一。MNIST 数据集包含 60,000 张手写数字的训练图像(从 0 到 9)和 10,000 张测试图像。因此,MNIST 数据集共有 10 个不同的类别。手写数字图像以 28×28 的矩阵表示,其中每个单元格包含灰度像素值。 MNIST数据集是机器学习领域一个非常经典的数据集,它被广泛用于训练各种图像处理系统。数据集中的图像均为手写数字,从0到9,共有60,000张作为训练样本,10,000张作为测试样本,总计70,000张图像。这些图像均为灰度图像,大小为28×28像素,每个像素对应一个介于0到255的灰度值,其中0代表纯黑色,255代表纯白色。MNIST数据集的10个类别对应于10个数字。 在机器学习和深度学习的研究与应用中,MNIST数据集扮演着极为重要的角色。由于其规模适中、特征明确,它成为了许多算法验证自身性能的理想选择。尤其对于初学者而言,通过接触MNIST数据集可以更快地理解并实践各种机器学习算法和深度神经网络模型。 使用Python进行MNIST手写数字识别通常会涉及以下几个步骤:首先是数据的导入和预处理,接着是模型的设计,然后是训练模型,最后是模型的评估和预测。在这个过程中,数据预处理包括对图像进行归一化处理,使所有像素值介于0到1之间,以减少计算量和避免过拟合。模型设计方面,可以采用经典的机器学习算法,如支持向量机(SVM),K近邻(KNN)算法,也可以采用更为复杂和强大的深度学习模型,例如卷积神经网络(CNN)。 在实际编程实现中,可能会用到一些流行的Python库,如NumPy、Matplotlib用于数据处理和可视化,Pandas用于数据管理,Scikit-learn和TensorFlow或PyTorch等深度学习框架用于模型构建和训练。源代码会包含构建、训练模型的函数,以及数据预处理的步骤。通过运行这些代码,开发者可以训练出一个能够对MNIST数据集中的手写数字进行识别的模型。 此外,该Python项目还会包括一个数据集,这个数据集就是MNIST手写数字图像及其对应标签的集合。标签即为每个图像中手写数字的真实值。这个数据集是项目的核心,它允许开发者利用机器学习算法训练出一个分类器,并用测试集评估这个分类器的性能。 使用Python进行MNIST手写数字识别是一个极佳的入门级机器学习和深度学习项目。它不仅可以帮助初学者理解机器学习的基本概念,还可以通过实际操作加深对复杂算法的理解。通过这个项目,学习者可以构建出一个能够识别手写数字的模型,并在实践中掌握如何处理图像数据和训练神经网络。
2025-06-09 15:51:29 2.78MB 机器学习样本 手写数字样本
1
**背景** 浸润性导管癌(IDC)是所有乳腺癌中最常见的亚型。为了对整个组织样本进行侵袭性分级,病理学家通常专注于包含 IDC 的区域。因此,自动侵袭性分级的常见预处理步骤之一是划定整个组织切片中 IDC 的确切区域。 **内容** 原始数据集包含 162 张乳腺癌(BCa)标本的整个组织切片图像,扫描倍率为 40 倍。从中提取了 277,524 个大小为 50 x 50 的 patches(198,738 个 IDC 阴性,78,786 个 IDC 阳性)。每个 patch 的文件名格式为:u_xX_yY_classC.png —— 例如 10253_idx5_x1351_y1101_class0.png。其中,u 是患者 ID(10253_idx5),X 是该 patch 裁剪位置的 x 坐标,Y 是该 patch 裁剪位置的 y 坐标,C 表示类别,0 为非 IDC,1 为 IDC。
2025-04-04 23:40:02 5KB 深度学习 源码
1
可计算的一般均衡(Computable General Equilibrium,CGE)模型作为政策分析的有力工具,经过30多年的发展,已在世界上得到了广泛的应用,并逐渐发展成为应用经济学的一个分支。 部分内容如下: Sets i SECTORS / agric Agriculture hindus Heavy industry Lindus Light industry buil Building and construction stran Transport and warehousing and post serv Services coal Coal industry petr Petroleum industry gas Gas industry fele Fire eleetrieity Produetion lcene Low carbon energy / oths(i) /agric,hindus,lindus,buil,stran,serv/ nf(i) /coal,petr
2024-06-21 10:54:03 2.04MB
1
使用getdata.py下载数据,或者使用自己的数据源,将数据放在stock_daily目录下 使用data_preprocess.py预处理数据,生成pkl文件,放在pkl_handle目录下(可选) 调整train.py和init.py中的参数,先使用predict..py训练模型,生成模型文件,再使用predict.py进行预测,生成预测结果或测试比照图 本项目使用机器学习方法解决了股票市场预测的问题。项目采用开源股票数据中心的上证000001号,中国平安股票(编号SZ_000001),使用更加适合进行长时间序列预测的LSTM(长短期记忆神经网络)进行训练,通过对训练集序列的训练,在测试集上预测开盘价,最终得到准确率为96%的LSTM股票预测模型,较为精准地实现解决了股票市场预测的问题
2024-06-07 15:00:05 4.9MB 神经网络 lstm 数据集
1
可直接运行, 1、内容概要:本资源主要基于XGBoost与LightGBM实现文本分类,适用于初学者学习文本分类使用。 2、数据集为电商真实商品评论数据,主要包括训练集data_train,测试集data_test ,经过预处理的训练集clean_data_train,训练好的word2vec词向量模型w2v_model.pkl和中文停用词表stopwords.txt,可用于模型训练和测试,详细数据集介绍见商品评论情感数据说明文档。 3、源代码:word2vec_analysis.py 是基于Word2Vec进行词向量的生成,采用向量平均求得句向量,然后分别构建RandomForest和GBDT分类模型进行文本分类。 4、源代码:xgboost_model.py是基于xgboost模型对文本进行分类。 5、源代码:lightGBM_model.py是基于lightGBM模型对文本进行分类。
2024-04-10 20:39:49 37.99MB 数据集
1
Python基于LSTM模型实现预测股市源代码+模型+数据集
2024-02-27 16:37:52 3.92MB python lstm 数据集
labview实现数据保存 开机数据读取 实现 啦记录数据功能 功能强大 实用性很轻
2022-12-27 09:29:07 16KB labview
1
TensorFlow+Keras深度学习人工智能实践应用(源代码与数据集) 包含源代码和数据集 ,免去数据集下载缓慢的烦恼
2022-10-19 16:09:26 213.96MB TensorFlow keras 源代码 数据集
1
摘 要 随着社会经济的快速发展,城镇化的加速建设,房地产交易越来越火,尤其二手房交易市场居高不下,互联网涌现大批网上二手房交易网站,但是由于提供的房源质量参差不齐,对于个人用户的需求不够精确,无法做到房源精准投放,因此需要实现二手房房源推荐系统来解决用户需求,而房源推荐系统的实现首要就是需要获得足够多的房源信息,所以本毕设通过实现二手房数据爬取系统来爬取房源数据,为房源推荐系统提供数据支持。 本系统使用多线程多端爬虫的优势,设计一个基于Redis的分布式主题爬虫。本系统采用Scrapy爬虫框架来开发,使用Xpath网页提取技术对下载网页进行内容解析,使用Redis做分布式,使用MongoDB对提取的数据进行存储,使用Django开发可视化界面对爬取的结果进行友好展示,设计并实现了针对链家网二手房数据的分布式爬虫系统。 经过开发验证,本系统可以完成对链家二手房房源数据的分布式爬取,可以为房源推荐系统提供数据支持,也可以为数据分析师提供二手房数据分析的数据源。 关键词:二手房:分布式爬虫:Scrapy:可视化
2022-08-30 13:01:41 1.06MB
1
<利用Python进行数据分析>的源代码和数据集
2022-08-02 20:30:40 40.36MB Python 数据分析
1