2024亚太杯数学建模论文洪水的频率和严重程度与人口增长趋势相近。迅猛的人口增长,扩大耕地,围湖造田,乱砍滥伐等人为破坏不断地改变着地表状态,改变了汇流条件,加剧了洪灾程度。2023 年,全球洪水造成了数十亿美元的经济损失。因此构建与研究洪水事件预测发生模型显得尤为重要,本文基于机器学习回归,通过对比分析,构建了预测效果较好的洪水概率预测模型,为灾害防治起到一定贡献作用。
### 2024亚太杯数学建模B题:基于机器学习回归的洪水预测模型研究
#### 一、研究背景及目的
随着全球人口的快速增长以及人类活动对自然环境的影响日益加剧,洪水的发生频率和严重程度也在逐年上升。据文中描述,2023年全球因洪水造成的经济损失高达数十亿美元。为了有效减轻洪水灾害带来的负面影响,构建一个能够准确预测洪水事件发生的模型变得至关重要。本研究旨在通过机器学习回归技术,构建并优化洪水预测模型,以期提高灾害预防和应对能力。
#### 二、研究方法概述
1. **相关性分析**:通过计算皮尔逊相关系数来评估各个指标与洪水发生之间的关系强度。此步骤帮助确定哪些因素对洪水发生的可能性有显著影响。
- **高相关性指标**:森林砍伐、滑坡、气候变化、人口得分、淤积、河流管理、地形排水、大坝质量和基础设施恶化。
- **低相关性指标**:季风强度、海岸脆弱性、侵蚀、排水系统、规划不足、城市化、流域、政策因素、无效防灾、农业实践、湿地损失。
2. **K聚类分析**:用于将洪水事件按照风险等级分为高中低三个类别,并通过CRITIC权重分析法确定每个指标的权重。随后,建立了有序逻辑回归模型,并通过准确率、召回率等指标对其性能进行了评估。
3. **模型对比与优化**:在问题三中,通过对问题二中建立的有序逻辑回归模型进行进一步分析,剔除了两个对结果贡献较小的指标,选择了五个关键指标(河流管理、气候变化、淤积、基础设施恶化、人口得分),构建了三种不同的模型(线性回归、梯度下降法线性回归、梯度提升树),并对这些模型进行了对比分析,最终选择了性能最优的梯度提升树模型。
4. **预测与验证**:利用问题三中选定的最佳模型对预测数据集进行洪水发生概率的预测,并通过S-W检验和K-S检验验证了预测结果的准确性。
#### 三、具体实施步骤
1. **问题一**:分析了各个指标与洪水发生的相关性,并绘制了热力图和柱状图以直观展示结果。
2. **问题二**:
- 使用K聚类分析将洪水概率分为高中低三个等级。
- 应用CRITIC权重分析法计算各指标的权重。
- 基于上述结果构建了有序逻辑回归模型,并通过准确率、召回率等指标评估模型性能。
3. **问题三**:
- 在问题二的基础上进一步优化模型,选择五个关键指标构建三种模型(线性回归、梯度下降法线性回归、梯度提升树)。
- 通过模型对比分析选择了梯度提升树作为最佳模型。
4. **问题四**:利用问题三中的最佳模型进行实际数据预测,并验证了预测结果的有效性和可靠性。
#### 四、结论与展望
通过上述研究,本文成功构建了一个基于机器学习回归的洪水预测模型。该模型不仅能够有效地预测洪水发生的概率,而且还可以为相关部门提供科学依据,以便采取更加有效的防灾减灾措施。未来的研究可以进一步探索更多影响洪水的因素,并尝试使用更先进的机器学习算法来提高预测精度。此外,还可以考虑将该模型应用于实际场景中,以评估其在真实世界中的应用效果。
2024-08-17 19:01:27
431KB
机器学习
1