STM32环境下的TI CC1101无线传送模块的循环模式收发驱动代码 无线
2025-10-13 16:32:02 4.46MB STM32 CC1101 无线传送模块 循环模式
1
STM8单片机是STMicroelectronics推出的一种8位微控制器,以其高效能和低功耗特性在嵌入式系统设计中广泛应用。在某些需要长时间运行或电池供电的应用中,实现低功耗模式变得至关重要。本篇文章将详细讲解如何在STM8S003F3P6单片机上使用IAR编译器实现低功耗的Wait模式。 Wait模式是STM8系列单片机的一种节能运行状态,它允许CPU暂停执行,直到有外部中断发生才会恢复运行。这种模式下,时钟系统保持工作,而其他外设可根据其自身电源管理设置进入低功耗状态,从而显著降低功耗。 我们需要理解STM8S003F3P6的电源管理模式。该芯片提供了几种低功耗模式,包括Idle(空闲)模式、Stop(停止)模式和Standby(待机)模式。Wait模式介于Idle和Stop之间,它保留了RAM中的数据,并且在等待中断时能够快速响应。 在IAR Embedded Workbench集成开发环境中,我们可以直接操作STM8的寄存器来配置和进入Wait模式。以下是一些关键步骤: 1. **配置中断**:确保需要唤醒单片机的外部中断已经正确配置。这通常涉及设置中断使能和优先级,以及相关的端口和引脚设置。 2. **设置电源控制寄存器**:在STM8S003F3P6中,电源控制寄存器(PWR_CR)用于管理低功耗模式。需要设置PWR_CR的LPDS位为1,以启用Wait模式。同时,可能还需要根据应用需求调整其他相关位,如PVDE(电源电压检测使能)和DBP(调试模式禁止)等。 3. **进入Wait模式**:在适当的位置(如主循环或特定函数中),通过设置或清除CPU控制寄存器(CCP)的CCPD7位,然后执行`WAI`指令,可以使单片机进入Wait模式。当有外部中断触发时,CPU会自动退出Wait模式并执行中断服务程序。 在提供的`main.c`源代码中,可以看到类似的配置和进入Wait模式的代码段。`main.h`可能包含了相关定义和宏,方便我们访问和设置寄存器。例如: ```c #include "stm8s.h" void setup(void) { // 配置中断和电源管理 } int main(void) { setup(); while (1) { // 进入Wait模式 CCP1配置为写PWR_CR的LPDS位; WAI; // 执行Wait指令 } } ``` 编译过程中的`pulse_power.ewd`、`.ewp`和`.eww`文件是IAR编译器产生的工程工作区和项目文件,它们存储了编译器设置、链接器选项以及项目依赖等信息。`Backup of PWM.ewp`可能是旧版本的项目文件,用于备份或回滚。`clear_compile_garbage_files.bat`可能是一个批处理文件,用于清理编译过程中生成的临时文件,以保持工作环境整洁。`BuildLog.log`和`TermIO.log`则记录了编译过程和终端输出信息,帮助开发者追踪错误和警告。 总结来说,实现STM8单片机的低功耗Wait模式,需要理解电源管理寄存器的配置,正确设置中断,以及在合适的地方执行进入Wait模式的指令。通过这种方式,我们可以有效地降低功耗,延长设备的运行时间,尤其适用于电池驱动或对功耗敏感的项目。
2025-10-11 18:39:06 71KB STM8 wait
1
显示器性能测试与图像处理技术一直以来都是电子显示行业的重要研究课题。在这一领域内,响应时间、亮度量化分析以及色彩还原等参数对于评价显示器质量至关重要。本压缩包文件中包含的资料,即是围绕这些关键技术进行深入探讨的工具和文档。 响应时间是指显示器从接收信号到画面稳定显示所需的时间,它直接关系到显示器播放动态画面的流畅度。响应时间越短,用户在观看高速运动场景时所感受到的拖影和模糊现象就越少,这对于游戏玩家和专业图形设计人员尤为重要。为了解决这一问题,研究者开发了多种响应时间计算算法,这些算法能够准确测量并分析显示器的响应速度,帮助制造商优化其产品。 亮度量化分析系统是评估显示器亮度表现的重要工具。亮度是显示器能够展现的最亮和最暗画面间的亮度差异。高动态范围(HDR)技术的兴起使得亮度量化更加复杂,但同时也提供了更广阔的色彩和亮度表现空间。文档中提到的基于ST2084标准和gamma曲线的电视显示器响应时间测量工具,指的是一种符合国际标准的亮度量化方法。ST2084标准,也称为HLG(Hybrid Log Gamma),是一种HDR视频的亮度编码标准,能够为显示器提供更准确的亮度量化参考。 此外,该工具支持自定义稳定时间百分比阈值,这意味着用户可以根据自己的需求设定一个时间标准,以此来判断显示器在该时间范围内是否达到亮度稳定。这一功能对于追求极致画面质量的专业人员来说尤为有价值,因为它可以帮助他们选出最适合他们工作需求的显示器。 该压缩包还提供了两种亮度量化模式选择,这可能意味着用户可以根据不同的应用场景选择不同的亮度量化模式,如家庭影院模式和专业图像处理模式等。不同的量化模式可以针对不同的使用环境和用户需求,对显示器的亮度表现进行优化。 文件名称列表中的“附赠资源.docx”可能包含了更多关于显示器性能测试的实用技巧、工具使用说明或案例分析,而“说明文件.txt”则可能提供了对软件工具安装、使用方法等基本操作的指导。至于“preloook_display_od_test-main”这个文件夹,听起来像是软件工具的主文件夹,可能包含了软件的源代码、可执行文件以及相关的开发文档。 这些文件资料为显示器性能测试和图像处理提供了全面的技术支持,从响应时间的精确测量到亮度量化的深度分析,再到使用场景的个性化选择,都体现了对显示器质量要求日益提高的现代电子显示技术的追求。
2025-10-11 16:52:08 16.19MB
1
非常规态型近场动力学代码:二维纬度自适应时间积分与零能抑制模式详解——基于MATLAB的详细注释实现,基于非常规态的二维近场动力学代码:自适应时间积分与零能抑制的MATLAB实现,附详细注释,非常规态型近场动力学代码 纬度:二维; 时间积分:自适应动态松弛 or verlet-velocity; 零能抑制模式:silling method or Li pan method; 语言:MATLAB 代码注释详细,可适当 ,核心关键词: 非规态型近场动力学代码; 二维纬度; 时间积分(自适应动态松弛/verlet-velocity); 零能抑制模式(silling method/Li pan method); MATLAB语言; 代码注释详细。,非常规态型近场动力学二维时间积分自适应代码 - 包含Silling/Li Pan零能抑制方法(MATLAB版)
2025-10-11 10:40:03 195KB
1
内容概要:本文探讨了两相流体在基质与裂缝双重介质中基于达西定律的流动模式。通过Comsol软件建模和仿真,详细介绍了从模型建立到代码实现的全过程。首先设定了两相流体在基质与裂缝双重介质中流动的模型,考虑了流体的渗透性和孔隙率等因素。然后利用Comsol软件进行了仿真设定,包括定义问题类型、材料属性、创建几何模型、网格划分、求解器设置和编写代码实现仿真。最后通过对流量数据分析,揭示了两相流体在基质与裂缝双重介质中的流动特性和相互作用关系。 适合人群:从事地质工程、石油工程和环境科学研究的专业人士和技术人员。 使用场景及目标:①帮助研究人员理解和预测两相流体在多孔介质和裂缝双重介质中的流动行为;②提供实际应用中的参考依据,如油气开采、地下水污染治理等。 其他说明:本文不仅展示了具体的仿真流程,还强调了模型调整和优化的重要性,为进一步深入研究奠定了基础。
2025-10-10 22:39:32 244KB
1
内容概要:本书《Agentic Design Patterns》系统介绍了构建智能AI代理系统的核心设计模式,涵盖提示链、路由、并行化、反思、工具使用、规划、多代理协作、记忆管理、异常处理、人机协同、知识检索(RAG)、代理间通信等关键技术。通过结合Google ADK等实际代码示例,深入讲解了如何构建具备自主决策、动态适应与容错能力的智能体系统,并强调了在金融、医疗等高风险领域中责任、透明度与可信度的重要性。书中还探讨了大模型作为推理引擎的内在机制及其在代理系统中的核心作用。; 适合人群:具备一定AI和编程基础的研发人员、系统架构师、技术负责人,尤其是从事智能系统、自动化流程或AI产品开发的1-3年经验从业者;对AI代理、多智能体系统感兴趣的进阶学习者也适用。; 使用场景及目标:① 掌握如何设计高效、可靠、可扩展的AI代理系统;② 学习在复杂任务中应用并行执行、错误恢复、人机协同等关键模式;③ 理解大语言模型作为“思维引擎”的工作原理及其在智能体中的角色;④ 构建适用于金融、客服、自动化运维等现实场景的鲁棒AI系统。; 阅读建议:本书以实践为导向,建议读者结合代码示例动手实操,尤其关注ADK框架下的代理构建方式。学习过程中应注重理解设计模式背后的原则而非仅复制代码,并思考如何将这些模式应用于自身业务场景中,同时重视系统安全性、伦理规范与工程稳健性。
2025-10-08 16:23:44 18.02MB Multi-Agent System Design
1
内容概要:本文详细介绍了基于FPGA实现CRC校验算法的方法,涵盖CRC8、CRC16和CRC32三种常见模式。首先解释了CRC算法的基本原理,即通过模2除法生成校验码,确保数据传输或存储的完整性。接着阐述了FPGA实现CRC的具体步骤,如使用移位寄存器模拟除法过程,并提供了详细的Verilog代码示例。文中还讨论了参数化设计的优势,使得同一模块可以通过修改参数适应不同的CRC标准,提高了灵活性和复用性。此外,文章分享了一些实际应用中的经验教训和技术细节,如资源优化、时序分析和不同标准之间的差异处理。 适合人群:具备一定硬件设计基础,特别是熟悉FPGA和Verilog编程的工程师或研究人员。 使用场景及目标:适用于需要高性能、高可靠性的数据传输和存储系统的设计,特别是在通信、嵌入式系统等领域。目标是帮助读者掌握如何利用FPGA实现高效的CRC校验机制,提升系统的鲁棒性和性能。 其他说明:文章不仅提供理论讲解,还包括大量实战经验和代码片段,有助于读者快速理解和应用相关技术。同时强调了CRC校验在实际工程项目中的重要性及其广泛应用前景。
2025-10-07 15:43:05 356KB
1
在VC++编程环境中,非模式对话框是一种常见且实用的用户界面元素,它允许用户在主应用程序窗口之外进行交互而不必关闭当前窗口。本篇将深入探讨如何利用VC++实现非模式对话框的创建、销毁以及收缩和扩展功能。 我们需要理解非模式对话框的基本概念。非模式对话框(Non-modal Dialog)不同于模式对话框,它不会阻塞用户的其他操作,用户可以继续在主窗口或其他窗口上进行工作。这对于需要长时间交互或需要提供多个操作的场景非常有用。 创建非模式对话框通常涉及以下几个步骤: 1. **创建对话框类**:我们需要创建一个继承自CDialog的类,这个类将包含对话框的逻辑。在类定义中,使用IDD_Dialog宏指定对话框资源ID。 2. **设计对话框资源**:在资源编辑器中,创建一个新的对话框资源,添加所需的控件并设置它们的属性。 3. **实现DoDataExchange函数**:这是用于数据交换的函数,用于对话框控件与成员变量之间的绑定。 4. **重载OnInitDialog函数**:在这里,我们可以执行对话框初始化的操作,如设置初始值或调整控件的布局。 接下来,我们将讨论如何实现对话框的收缩和扩展功能。这通常涉及到动态改变对话框的大小和控件的位置。以下是一些关键点: 1. **定义收缩和扩展按钮**:在对话框上添加两个按钮,分别用于触发收缩和扩展操作。 2. **处理按钮消息**:为按钮的消息响应函数编写代码,如ON_BN_CLICKED(IDC_BUTTON_COLLAPSE)和ON_BN_CLICKED(IDC_BUTTON_EXPAND)。 3. **计算新的尺寸**:在按钮的响应函数中,根据当前对话框的大小和预设的收缩或扩展尺寸,计算出新的对话框尺寸。 4. **调用MoveWindow函数**:使用CWnd类的MoveWindow函数来改变对话框的大小。同时,可能需要调整对话框内控件的位置以适应新的尺寸。 5. **更新控件的布局**:在调整对话框大小后,可能需要更新某些控件的布局,确保它们仍然可见且布局合理。 6. **刷新屏幕**:调用UpdateWindow函数以使屏幕上的变化立即生效。 在实际项目中,可能还需要考虑对话框的动画效果,比如平滑地改变大小而不是瞬间跳转。这可以通过定时器(Ctimer)来实现,每次改变一点点尺寸,直到达到目标大小。 通过理解非模式对话框的工作原理,并结合C++ MFC库提供的功能,我们可以创建具有收缩和扩展功能的非模式对话框。这不仅提升了用户体验,也为复杂应用提供了更多的交互可能性。在实践中,不断学习和熟练掌握这些技巧是提升VC++编程能力的重要一环。
2025-09-30 10:26:29 2.28MB vc++ 收缩扩展
1
这是模式识别选修的上机,我用到了tensorflow,matlab。数据集也在里面,为了方便有些数据直接用的库函数调用(没用老师指定的数据,验收时助教也没说),uu们如果缺库函数可能需要配一下(甚至因为我这个是步进运行,之前的运行结果应该还保留着φ(* ̄0 ̄))。 上机内容如下: 第一次 验证算法: 1)K近邻方法分类; 2)最近邻方法分类; 3)分析k值不同情况或不同方式、比例训练样本情况,画出错误率/正确率曲线; 数据: 1)uSPS手写体 2)ucI数据库中sonar数据源 3)UCI数据库中Iris数据 第二次 比较kmeans算法和FCM算法数据集: 1)sonar和lris数据上验证 2)CIFAR图像数据上验证算法 第三次 验证方法:SVM 数据集:Extended YaleB人脸数据库(选做CIFAR-10数据集) 核函数:高斯核和多项式核 核参数可以手动调节或交叉验证确定 第四次 要求:验证bagging和adaboost算法 在CIFAR-10数据集和ex.ended Yale B数据集上组合分类器自己设定
2025-09-29 19:02:47 2.93MB 模式识别 人工智能 tensorflow matlab
1
内容概要:本文详细介绍了在国内注册谷歌邮箱的具体步骤。首先,需要使用国外浏览器并将默认语言更改为英语(美国),以确保操作环境符合要求。接着,通过无痕模式进入指定网址(https://google.com/ncr),避免跳转到其他域名,点击“Sign in”开始注册流程。注册过程中,依次输入个人信息,如姓名、生日、性别、选择邮箱名、设置包含字母、数字和符号的密码。最关键的是手机验证环节,由于浏览器语言设置为英文,可以正常接收验证码。最后,添加安全邮箱(可选),确认信息后完成注册。对于可能遇到的手机验证问题,提供了清除浏览器缓存、更改电脑地区和首选语言、更换设备或上网节点等解决方案。 适用人群:在国内需要注册谷歌邮箱的用户,尤其是对操作流程不太熟悉的用户。 使用场景及目标:①帮助用户在国内成功注册谷歌邮箱;②解决注册过程中可能出现的手机验证等问题。 其他说明:建议按照文中提供的步骤逐一操作,若遇问题可参考提供的解决方法。确保浏览器和设备设置正确是顺利完成注册的关键。
2025-09-28 15:52:24 710KB 注册流程 浏览器设置 手机验证
1