Hough 变换(Hough Transform)是一种常用的检测图形的算法。主要原理是通过在参数空间中的投票统计来检测图像中的基本形状。 它通过搜索特定形状(如直线,圆,椭圆等)在参数空间的累加器中的局部最大值来检测形状。Hough 变换主要用于检测图像中的基本形状,如直线,圆等。 用于图像处理领域的经典算法,Hough直线检测、圆检测、椭圆检测的c++算法实现
2024-10-29 10:01:35 96.02MB 图像处理 霍夫变换
1
霍夫变换检测圆代码MATLAB 计算机视觉项目地球检测 在混乱的环境中进行政治地球仪检测 计算机视觉中的常见问题是在图片或视频流中搜索并找到特定的对象或形状。 在这个特殊的项目中,我们被要求设计和实施一个完整的程序,该程序可以通过选择可用的工具或编写我们自己的代码来识别任何方向和混乱环境中的小政治世界。 要运行该算法,请在Matlab中打开文件“ globe.m”。 它使用文件Hough Circles,DiscardDuplicateCircles,DiscardInnerCircles,DiscardNonEnclosedCircles查找图像中的圆。 完全包含在另一个圆中的圆被丢弃。 同样,不完全位于图像中的圆圈也将被丢弃。 经过初步处理并使用霍夫变换找到圆后,我们检测经度和纬度形成的平方以检测地球。 文件HoughLines,SeparateHorVerLines,DiscardDuplicateLines,DiscardNonHorVerLines,FindSquares用于查找图像中的正方形。 有关该项目的详细信息,请参见-。
2023-04-11 00:29:38 12KB 系统开源
1
在二值化之后,例如通过边缘检测器,霍夫变换可用于检测图像中的圆形形状。 通常,执行此操作的函数需要指定圆的半径。 函数 circle_hough 允许指定半径范围,因此不需要提前确切知道半径。 它可能比针对不同半径重复调用标准函数要快。 可以通过在 3D 累加器阵列中找到峰值来检测多个圆。 为此提供了一个函数 circle_houghpeaks。 这两个函数的演示包含在脚本 circle_houghdemo 中。 该 zip 文件包括在整数网格上高效且准确地实现圆逼近,无间隙。
2022-06-15 10:47:29 89KB matlab
1
为了克服传统Hough变换检测圆时耗时巨大的缺陷,给出了一种新的基于Hough变换检测圆的快速算法。新算法与传统的方法相比具有以下特点:计算量少,提高了检测的速度;保留了传统Hough变换识别率高、抗噪性强、对不完整边缘具有鲁棒性等所有优点;不需要任何特殊的限定条件。实验表明,新的快速算法可以快速进行目标识别,在实时目标识别系统中具有良好的表现。
1
通过边缘检测后,通过霍夫变换检测圆,最后得到圆心坐标,半径
2022-06-05 15:14:22 103KB 霍夫变换
1
hough变换检测椭圆的代码和详细介绍,可直接运行检测圆
2022-05-19 20:50:39 19KB hough
1
基于MATLAB 的HOUGH 变换检测圆
2022-05-11 11:48:35 83KB HOUGH 变换检测圆
1
import cv2 as cv import numpy as np def hough_circle(image): #因为霍夫检测对噪声很明显,所以需要先滤波一下。 dst =cv.pyrMeanShiftFiltering(image,10,100) cimage=cv.cvtColor(dst,cv.COLOR_BGR2GRAY) circles = cv.HoughCircles(cimage,cv.HOUGH_GRADIENT,1,40,param1=40,param2=29,minRadius=30,maxRadius=0) #把circles包含的圆心和半径的值变为整数 circles = np.uint16(np.around(circles)) for i in circles[0]: cv.circle(image,(i[0],i[1]),i[2],(0,255,0),3) cv.imshow("circle",image) src = cv.imread("E:/opencv/picture/coins.jpg") cv.imshow("inital_window",src) hough_circle(src) cv.waitKey(0) cv.destroyAllWindows() 霍夫圆变换的基本思路是认为图像上每一个非零像素点都有可能是一个潜在的圆上的一点, 跟霍夫线变换一样,也是通过投票,生成累积坐标平面,设置一个累积权重来定位圆。 在笛卡尔坐标系中圆的方程为: 其中(a,b)是圆心,r是半径,也可以表述为: 即 在笛卡尔的xy坐标系中经过某一点的所有圆映射到abr坐标系中就是一条三维的曲线: 经过xy坐标系中所有的非零像素点的所有圆就构成了abr坐标系中很多条三维的曲线。 在xy坐标系中同一个圆上的所有点的圆方程是一样的,它们映射到abr坐标系中的是同一个点,所以在abr坐标系中该点就应该有圆的总像素N0个曲线相交。 通过判断abr中每一点的相交(累积)数量,大于一定阈值的点就认为是圆。 以上是标准霍夫圆变换实现算法。 问题是它的累加到一个三维的空间,意味着比霍夫线变换需要更多的计算消耗。 Opencv霍夫圆变换对标准霍夫圆变换做了运算上的优化。 它采用的是“霍夫梯度法”。它的检测思路是去遍历累加所有非零点对应的圆心,对圆心进行考量。 如何定位圆心呢?圆心一定是在圆上的每个点的模向量上,即在垂直于该点并且经过该点的切线的垂直线上,这些圆上的模向量的交点就是圆心。 霍夫梯度法就是要去查找这些圆心,根据该“圆心”上模向量相交数量的多少,根据阈值进行最终的判断。 bilibili: 注意: 1.OpenCV的霍夫圆变换函数原型为:HoughCircles(image, method, dp, minDist[, circles[, param1[, param2[, minRadius[, maxRadius]]]]]) -> circles image参数表示8位单通道灰度输入图像矩阵。 method参数表示圆检测方法,目前唯一实现的方法是HOUGH_GRADIENT。 dp参数表示累加器与原始图像相比的分辨率的反比参数。例如,如果dp = 1,则累加器具有与输入图像相同的分辨率。如果dp=2,累加器分辨率是元素图像的一半,宽度和高度也缩减为原来的一半。 minDist参数表示检测到的两个圆心之间的最小距离。如果参数太小,除了真实的一个圆圈之外,可能错误地检测到多个相邻的圆圈。如果太大,可能会遗漏一些圆圈。 circles参数表示检测到的圆的输出向量,向量内第一个元素是圆的横坐标,第二个是纵坐标,第三个是半径大小。 param1参数表示Canny边缘检测的高阈值,低阈值会被自动置为高阈值的一半。 param2参数表示圆心检测的累加阈值,参数值越小,可以检测越多的假圆圈,但返回的是与较大累加器值对应的圆圈。 minRadius参数表示检测到的圆的最小半径。 maxRadius参数表示检测到的圆的最大半径。 2.OpenCV画圆的circle函数原型:circle(img, center, radius, color[, thickness[, lineType[, shift]]]) -> img img参数表示源图像。 center参数表示圆心坐标。 radius参数表示圆的半径。 color参数表示设定圆的颜色。 thickness参数:如果是正数,表示圆轮廓的粗细程度。如果是负数,表示要绘制实心圆。 lineType参数表示圆线条的类型。 shift参数表示圆心坐标和半径值中的小数位数。
2022-04-18 17:32:45 234KB opencv python
1
hough检测 用来检测圆 可以检测多个圆 C++编写
2022-03-26 15:43:36 1.88MB Hough
1
检测圆的霍夫变换matlab代码,非常有用,具体怎么用就不说了
2022-03-11 18:22:41 3KB hough
1