针对现有的基于卷积神经网络的图像超分辨率算法参数较多、计算量较大、训练时间较长、图像纹理模糊等问题, 结合现有的图像分类网络模型和视觉识别算法对其提出了改进。在原有的三层卷积神经网络中, 调整卷积核大小, 减少参数; 加入池化层, 降低维度, 减少计算复杂度; 提高学习率和输入子块的尺寸, 减少训练消耗的时间; 扩大图像训练库, 使训练库提供的特征更加广泛和全面。实验结果表明, 改进算法生成的网络模型取得了更佳的超分辨率结果, 主观视觉效果和客观评价指标明显改善, 图像清晰度和边缘锐度明显提高。
1