本文测试并比较了三款应用于大功率Wi-Fi产品设计的三款射频功率放大器(PowerAmplifier,PA),分别是Microsemi的LX5518,SiGe的SE2576和Skyworks的SKY65137-11。 在无线通信领域,射频功率放大器(Power Amplifiers,简称PAs)是至关重要的组件,尤其是在大功率Wi-Fi产品设计中。本文针对Microsemi的LX5518、SiGe的SE2576以及Skyworks的SKY65137-11这三款大功率射频放大器进行了详细的评测,旨在评估它们的性能和效率。 在测试过程中,采用了一系列专业的仪器设备,包括Agilent E4438C矢量信号发生器来生成PA的输入信号,Agilent N4010矢量信号分析仪用于检测PA的输出特性,如星座图、误差向量幅度(EVM)和输出功率等。此外,还需要E3631A线性直流稳压电源为PA供电,以及一台测试电脑和交换机,确保整个测试系统的数据传输和控制。 测试环境设在实验室,保持室温,以减少外部因素对测试结果的影响。测试步骤主要包括:将PA置于信号发生器和信号分析仪之间,接通电源,设置信号发生器输出特定的OFDM调制信号,然后读取并记录PA的输出性能和电流消耗。通过改变输入功率、中心频率和传输速率,收集多组数据,以便全面评估PA的性能。 LX5518在2.437GHz下的测试结果显示了其输入功率与输出功率的关系,以及在不同输出功率下对应的电流消耗情况。这有助于理解LX5518在实际工作中的效率和功率转换能力。同样,SE2576的测试数据揭示了其在相同频率下的性能,而SKY65137-11在5.5GHz频段的表现则提供了对高频应用的评估。 通过对这三款放大器的对比,我们可以分析出它们在功率增益、效率、线性度以及电流消耗等方面的差异。例如,LX5518可能在低功耗和高功率输出之间找到了一个良好的平衡,而SE2576可能更适合需要高线性度的应用。另一方面,SKY65137-11在高频操作下可能表现出优秀的性能,适合5GHz Wi-Fi频段。 这些评测结果对于设计师选择适合特定应用的PA具有重要指导意义。在选择PA时,除了考虑其基本性能指标,还要结合系统需求,如功率要求、频率范围、效率、尺寸和成本等因素。例如,如果应用对功率密度有较高要求,那么SKY65137-11可能是理想选择;而如果对功耗控制更为关注,LX5518可能会更合适。 本次评测提供了深入的比较,有助于理解这三款大功率射频放大器在实际应用中的性能表现,从而帮助工程师做出最佳决策,优化他们的Wi-Fi产品设计。
2024-11-13 09:51:23 268KB
1
高频电子线路中的丙类谐振功率放大器是一种高效的射频功率放大装置,特别适用于需要高功率输出和高效率的应用,如无线电发射机和雷达系统。在使用Multisim进行仿真实验时,我们可以深入理解和分析丙类谐振功率放大器的工作原理和性能特性。 首先,丙类谐振功率放大器的主要特点是工作在临界或过压状态下,此时晶体管的集电极电压高于其截止电压,使得晶体管在半个信号周期内处于导通状态,而在另一半信号周期内则处于截止状态。这种工作模式使得放大器能够在高效率下运行,但同时也引入了较大的非线性失真。 在Multisim仿真实验中,我们首先需要构建丙类谐振功率放大器的电路模型,包括晶体管、谐振回路、偏置网络和其他必要的元件。为了实现有效的功率放大和频率选择,我们需要精确调整谐振回路的参数,如电感和电容值,以使其谐振频率与输入信号频率相匹配。 接下来,我们可以输入不同幅度和频率的射频信号,并观察放大器的输出波形和性能指标。通过测量输出功率、增益、效率和失真度等参数,我们可以评估放大器的性能并优化其设计。此外,还可以通过改变偏置条件和负载电阻等参数,研究它们对放大器性能的影响。 在仿真实验中,我们可能会注意到
2024-11-11 16:52:52 78KB 网络 网络
1
利用低噪声前置运算放大器把光电倍增管的输出信号尽可能无噪声的放大。从运放的选择,多级放大电路的设计要点,放大电路的噪声估算,PCB板布局连线和屏蔽等方面,提出了实用化的带宽达10 MHz的电路设计形式,以及注意事项及其信号调理方法。仿真结果显示了所设计电路的信号放大情况,此电路设计形式可以很好的放大并处理光电倍增管的输出信号。
2024-11-07 20:22:22 544KB 工程技术 论文
1
如图所示为2W音频功率放大电路。该电路采用了14脚封装的LM380作为放大器件,输入信号经音量控制电位器Rp(20kΩ)和22μF的耦合电容加到运放LM380的反相输入端(引脚6),其同相输入端(引脚2)接地,引脚1外接10μF的滤波电容,以滤除高频纹波干扰,电路采用16V单电源供电,并在电源端(引脚14)到地之间外接470μF的去耦电容,其输出端(引脚8)到地之间有两个并联支路:一支路由2.7Ω电阻与0.1μF电容串联组成,用于提高电路的稳定性,滤除部分高频,防止产生高频自激振荡;另一支路由470μF的耦合电容Co和负载ZL(8Ω喇叭)组成,Co和ZL决定了电路的下限截止频率fL。由图中的参
2024-09-19 00:19:34 80KB
1
在电子设计领域,ADS(Advanced Design System)是一款广泛使用的射频和微波电路设计软件,由Keysight Technologies(原Agilent Technologies)开发。本资源集合是针对ADS软件的一个实用工具包,特别关注于功率放大器的建模和仿真。标题中的“MRF8P9040N模型”和“RF_POWER模型”是两种关键的模拟组件,它们对于理解和设计射频功率放大器至关重要。 MRF8P9040N是一款高性能的功率晶体管,常用于无线通信系统的功率放大环节。其模型文件(MRF8P9040N_MDL_ADS.zip)包含该器件的详细电气特性,使得用户能在ADS环境下进行精确的电路仿真。模型文件通常包括S参数(散射参数)、晶体管的转移特性、频率响应等信息。这些数据使设计师能够预测在不同工作条件下MRF8P9040N的性能,例如增益、输出功率、效率以及非线性效应等。 “RF_POWER模型”则可能是一个通用的功率放大器模型,适用于多种功率器件。它可能包含一系列参数,允许用户调整以适应不同的功率放大器类型或品牌。RF_POWER模型对于研究放大器的线性和非线性行为、功率增益、饱和现象、效率和热管理等问题非常有用。ADS软件内置的模型库提供了丰富的选择,但有时为了确保与实际器件的一致性,需要特定型号的模型文件,这就是这个资源包的价值所在。 “RF_POWER_ADS2017p1p9_DK.zip”文件很可能包含了更新或扩展的RF_POWER模型,适用于ADS 2017版的第1个至第9个补丁。这个版本的ADS可能包含了改进的仿真引擎、新的元器件模型或者对旧模型的优化,以提高仿真精度和速度。对于使用该版本软件的设计者来说,这个文件是必不可少的。 这个压缩包为使用ADS软件进行功率放大器设计的工程师提供了一套完整的解决方案,解决了模型与软件版本不兼容的问题。通过这两个模型,用户可以更准确地预测和分析功率放大器在真实系统中的表现,从而优化电路设计,减少实验迭代次数,降低开发成本。无论是学术研究还是工业应用,这个资源都具有很高的价值。
2024-09-10 14:47:44 2.23MB ads软件
1
### Doherty功率放大器研究与设计 #### Doherty功率放大器原理及设计要点 Doherty功率放大器作为一种高效、高性能的功率放大技术,在现代无线通信领域扮演着极其重要的角色。尤其对于高线性度和高效率要求的应用场景,如WCDMA基站等,Doherty技术的应用更是不可或缺。 ##### 1. Doherty功率放大器原理概述 Doherty功率放大器的基本结构由两个功率放大器组成:主放大器和辅助放大器。其中,主放大器通常工作在B类或AB类模式,而辅助放大器则工作在C类模式。这种结构的特点在于,当输入信号较小时,仅主放大器处于工作状态;随着输入信号增加,到达设定阈值后,辅助放大器开始参与工作,从而实现了在整个动态范围内保持较高的效率。 - **主放大器**:负责处理大部分的信号功率,并通过90°四分之一波长线实现阻抗变换,以确保在辅助放大器工作时能够降低视在阻抗。 - **辅助放大器**:在特定条件下激活,通过提供额外的功率支持来进一步提升整体系统的输出功率。辅助放大器的加入使得主放大器的负载降低,进而能够在主放大器输出电压饱和的情况下,通过增加流过负载的电流来提高输出功率。 这种独特的设计使得Doherty功率放大器能够在回退状态下仍保持较高的效率,尤其是在峰值功率的一半左右时达到最佳效率点。 ##### 2. Doherty功率放大器的设计流程 设计一款性能优异的Doherty功率放大器,需要经历以下步骤: - **选择合适的元件**:根据设计指标(例如额定功率30W,输出增益50dB,工作频率2110~2170MHz等),选择适合的功率放大器。本案例中选择了摩托罗拉的LDMOS管MRF21060作为核心元件,该管件在最大功率工作时的总功率可达120W,回退至30W时仍能保持高效率。 - **确定静态工作点**:为了实现Doherty结构的功能,需要分别设置主放大器和辅助放大器的工作点。主放大器通常工作在AB类模式,而辅助放大器则工作在C类模式。通过静态工作点扫描,选定合适的偏置条件以满足Doherty技术的要求。 - **阻抗匹配设计**:通过精确的阻抗匹配网络设计,确保放大器能够在所需的频率范围内高效运行。这一过程包括主放大器和辅助放大器之间的匹配,以及它们与外部负载之间的匹配。 - **90°合路器设计**:设计90°相位移合路器以确保两个放大器输出信号的同相叠加。这是实现Doherty结构的关键组成部分之一,对于维持系统的整体性能至关重要。 Doherty功率放大器的设计涉及多个关键步骤和技术要点,通过合理选择元件、精细调整工作点并优化匹配网络,可以实现既高效率又高线性度的目标。这一技术在现代通信系统中展现出巨大的潜力和应用价值,特别是在追求高效率和高性能的无线通信领域。
2024-09-03 10:12:15 162KB Doherty功放
1
"自适应前馈射频功率放大器设计" 自适应前馈射频功率放大器设计是指采用自适应前馈技术和包络检测技术来设计射频功率放大器。这种技术考虑到实际中可能遇到的问题,从而对复杂问题进行简化,不仅从理论上,而且从实践上证实了他的可实现性。 在现代无线通信中,人们广泛采用工作于甲乙类状态的大功率微波晶体管来提高传输功率和利用效率。然而,无源器件及有源器件的引入、多载波配置技术的采用等,都将导致输出信号的互调失真。因此,在设计射频功率放大器时,必须对其进行线性化处理,以便使输出信号获得较好的线性度。 常用的线性化技术包括功率回退、预失真、前馈等。其中,功率回退技术能有效地改善窄带信号的线性度,而预失真技术和前馈技术,特别是前馈技术,由于其具有高校准精度、高稳定度以及不受带宽限制等优点,成了改善宽带信号线性度时所采用的主要技术。 本文首先简述了普通的前馈线性化技术,然后在此基础上进行改进,添加了自适应算法,并通过信号包络检测技术提取出带外信号进行调节,从而达到改善输出信号线性度的目的。 前馈基本原理最基本的前馈放大器原理如图1所示。他由2个环路组成:环路1由功分器、主放大器、耦合器1、衰减器1、相移器1、延时线1、合成器1组成。输入的RF信号,即2个纯净的载波信号,经功分器后被分成两支路信号:上分支路为主功率放大器支路,纯净的RF载波信号经过该支路后产生放大后的载波信号和互调失真信号;下分支路为附支路,纯净的RF载波信号经过该支路后被延时,主功率放大器支路输出的非线性失真信号经衰减器1和相移器1后,与附支路输出的信号在合成器1中合成,调节衰减器1和相移器1使两支路信号获得相等的振幅、180''相位差以及相等的延迟。 环路2,也叫失真信号消除环路,由延时线2、辅助放大器、衰减器2、相移器2、耦合器2组成。同样也有两条分支支路:上分支路将主放大器输出的非线性失真信号延时后送人耦合器2;下分支路将环路1提取出的互调失真信号进行放大、衰减、相移后也送人耦合器2,调节衰减器2和相移器2,直到耦合器2输出的信号中互调失真信号最小,也就是IMD最小,则此时输出的信号就是放大的射频信号。 自适应前馈射频功率放大器的设计中,引入了自适应技术,以便能及时获得载波信号在振幅、相位以及延时上的匹配。自适应前馈系统的结构如图2所示。他由3个环路构成:环路1主要用于提取互调失真信号,环路2主要用于消除失真信号,而环路3则主要用于检测互调失真信号功率。 在具体的实现结构上,在合成器1后面又添加了功分器2,其目的是对信号υd(t,g, ψ)进行功率检测,很明显,如果调节α使得合成器1两输入信号的幅度、相位以及延迟都达到匹配,那么这里检测到的功率将只有互调失真信号υe(t)的平均功率尸+而他是很小的,换句话说,如果检测到功分器2输出的功率足够的小,那么此时对α的调节就达到了最优,即RF载波信号已被最大程度的消除了,而保留下来的仅有互调失真信号υe(t)。 进入环路2的互调失真信号经过辅助放大器放大,矢量调制器2(其调制系数为复系数β)调节后,与经过延时线2的主放大器输出信号在合成器2中合成。该环路对互调失真信号的振幅及相位调节同样也采用自适应技术,其数学原理如上所述,但在实现的结构上,却与环路1不同,环路1是通过直接检测合成器1的输出信号来判定RF载波信号是否被抵消到最小值,而环路2在判定互调失真信号是否被抵消到最小值时,却需要引入第三个环路。 我们知道,对于相同功率的输出信号,线性信号的包络要大于非线性信号的包络,而二者的包络差值信号就是互调失真信号,最大限度减小其包络差值信号,就能最大程度地改善输出信号的线性度,从而减小IMD。环路3的工作原理正在于此。他处理的两路信号一路是线性信号,即经过延时线3及功分器4的RF载波信号,另一路是非线性信号,即经前馈系统环路1和环路2后由合成器2输出的信号。
2024-07-16 21:01:24 189KB 射频功率
1
在本文中,我们将深入探讨如何使用Advanced Design System(ADS)软件进行WLAN频段低噪声放大器(LNA)的设计与仿真。ADS是一款强大的微波和射频电路设计工具,广泛应用于无线通信系统,包括Wi-Fi(WLAN)频率范围内的组件设计。 一、ADS软件介绍 ADS全称为Advanced Design System,是Keysight Technologies(原安捷伦科技)开发的一款综合性的射频和微波电路设计平台。它提供了从概念设计到物理实现的完整设计流程,包括电路仿真、信号完整性分析、电磁场仿真以及版图设计等功能。在LNA设计中,ADS可以帮助设计师优化性能参数,如增益、噪声系数、输入输出阻抗匹配等。 二、LNA设计基础 低噪声放大器(LNA)在无线通信系统中起着至关重要的作用,它的主要任务是在接收端放大微弱的射频信号,同时尽可能地保持低的噪声系数,以提高系统的整体灵敏度。在WLAN频段,LNA通常工作在2.4GHz至5GHz之间,这是IEEE 802.11标准定义的Wi-Fi通信频率。 三、LNA设计步骤 1. 需求分析:确定LNA的增益目标、噪声系数限制、电源电压和功耗要求。 2. 架构选择:LNA有多种架构,如共源共栅、差分对、互阻抗放大器等。每种架构有其优缺点,应根据具体需求来选择。 3. 模型建立:在ADS中创建电路模型,包括晶体管、无源元件和负载匹配网络。 4. 参数优化:通过仿真调整晶体管的偏置点和其他关键参数,以达到最佳性能。 5. 输入输出匹配:确保LNA与前端接收器和天线之间的阻抗匹配,以减少反射和信号损失。 6. 直流偏置设计:确保晶体管在工作状态下稳定,避免非线性行为。 7. 仿真验证:利用ADS的S参数仿真、噪声分析和瞬态仿真等功能,评估LNA的性能。 四、ADS仿真过程 在提供的文件列表中,我们看到有如`de_sim.cfg`、`hpeesofsim.cfg`、`dds.cfg`等配置文件,它们分别用于定义不同的仿真设置。例如,`de_sim.cfg`可能用于直流工作点分析,`hpeesofsim.cfg`可能用于高速射频仿真,而`dds.cfg`可能涉及相位噪声或直接数字频率合成(DDS)相关的设置。`LNA_Final.dds`、`LNA_1.dds`、`LNA_2.dds`等文件则代表了不同版本的LNA设计的仿真结果。 五、文件解析 - `workspace.ads`:ADS的工作空间文件,包含项目的所有设计、仿真设置和结果。 - `*.dds`文件:这些可能是ADS的仿真输出,包含频率响应、噪声性能等信息。 - `*~`文件:这些通常是备份文件,以防原始文件被意外修改。 六、总结 在ADS软件的支持下,WLAN频段LNA的设计和仿真是一项精确且系统化的工程。通过不断迭代和优化,设计师可以得到满足特定性能指标的LNA设计方案。在实际应用中,还需要考虑温度、工艺和电源电压变化等因素的影响,进一步进行稳定性分析和测试,以确保LNA在各种条件下的可靠工作。
2024-07-16 15:38:41 277KB ads软件
1
个人声明:仅供布局借鉴,不保证最终实物的使用效果,请依照原理图自己绘制。 一、任务:设计并制作一个晶体管放大器非线性失真研究装置。 二、要求 外接信号源输出频率10kHz、峰峰值20mV的正弦波作为晶体管放大器输入电压ui,要求输出无明显失真及失真波形uo,且uo的峰峰值不低于2V,电源电压 ≤ 6v。 1、放大器能够输出无明显失真、“顶部失真”、“底部失真”、“双向失真”、“交越失真”的正弦波。 2、采用单个按键控制轮流输出以上五种波形并有相应的指示。 3、信号源输出频率50kHz、峰峰值2mV的正弦波作为晶体管放大器输入电压ui,要求输出无明显失真波形uo,uo的峰峰值不低于2V。 4、按格式要求撰写设计报告。设计报告主要内容: 1)方案论证:系统组成,比较与选择,方案描述。 2)电路设计:系统各部分电路原理图、原理分析,应结合电路设计方案阐述出现各种失真的原因,电路相关参数设计。 3)程序设计:若采用单片机控制,提供系统软件与流程图。 4)电路仿真:仿真电路图及仿真测试结果。 5)测试结果:完整测试结果列表,对测试结果分析。
2024-07-09 16:31:16 817KB
1
结合Buck型DC-DC转换器的工作原理,从系统的稳定性和响应速度要求出发,提出一种高性能误差放大器及环路补偿方案。该误差放大器具有高的共模抑制CMRR和高的电源抑制比PSRR。电路结构采用CSMC 0.5 μm BCD工艺,仿真结果表明,该误差放大器共模抑制比为106 dB,电源抑制比为129 dB,其性能良好,满足DC-DC转换器的系统需要。
1