【高速扫描振镜驱动原理图】的描述提到了“高速振镜驱动电路”,这涉及到电机驱动和电路设计两个关键领域。高速振镜是一种常见的光学扫描元件,常用于激光打标、投影显示等领域,通过快速改变镜片的角度来扫描光束。 电机驱动部分,电路主要由以下几个部分构成: 1. **PIV运算后的信号**:PIV可能是位置或速度的反馈信号,经过运算后用于控制电机的动态响应。这种反馈机制确保了电机能够精确地按照指令运动。 2. **电流检测电阻**:用于实时监测电机的工作电流,确保电机在安全范围内运行,并可以用来调整电机扭矩和速度。 3. **差分位置指令信号输入**:差分信号能提高抗干扰能力,提供更准确的位置控制指令。 4. **实际位置信号输入**:来自电机编码器的信号,用于实时反馈电机的当前位置,与指令位置进行比较,形成误差信号。 5. **积分调节环节**和**速度调节环节**:是PID(比例-积分-微分)控制器的一部分,通过积分作用消除稳态误差,通过速度调节快速响应变化。 6. **误差信号**:是位置指令与实际位置的差值,经过频率补偿后,其大小可以调整,以适应不同系统的需求。 7. **比例系数调节**和**积分系数调节**:是调整PID控制器性能的重要参数,根据系统特性和应用需求进行设定。 8. **误差幅度限制**:防止因误差过大导致系统不稳定或损坏设备。 9. **窗口比较器**和**逻辑输出接口**:当误差超过预设范围时,输出逻辑信号,可用于报警或控制系统其他部分的动作。 10. **位置前馈**:基于当前位置的信息,提前调整电机的驱动信号,提高系统的响应速度。 电路中涉及的元器件包括运算放大器(如OP27、OP470G等)、电源芯片(如LM675、LM7812CT、LM7912CT等)、比较器(如LM339)、电源滤波电容(如1000uF 25V)以及各种电阻、电容等,这些共同构成了一个稳定、高效的驱动电路。 此外,电路还包含了电源驱动部分,如功率驱动电源电路,以及电流检测电路,用于提供稳定的工作电压和电流,确保电机的高效、安全运行。 综上,【高速扫描振镜驱动原理图】主要涵盖了电机驱动技术中的反馈控制策略、电路设计技巧以及电源管理等方面,是实现高速振镜精确扫描的关键。
2024-09-13 18:26:48 239KB 电机驱动 电路设计
1
基于FPGA的以太网激光振镜控制器设计与实现.pdf
2023-02-13 13:36:16 2.65MB
1
用于控制 振镜的协议,包括电路图 , 元器件资料,使用说明
2022-04-19 11:01:50 7.55MB 激光打标机 振镜
1
在线阵扫描型红外热像仪中,扫描振镜是重要的组成部分,其功能是将景物经过光学系统汇聚后的辐射信息精确传递到探测器靶面上,所以振镜的扫描角度就决定了信号能否精确到达靶面。而振镜的扫描角度又由驱动硬件电路所控制。针对此,本文提出了一种基于DSP控制方案,具有角度位置反馈的振镜驱动电路。
2022-02-25 18:25:15 112KB 驱动电路
1
振镜式激光扫描器在现代工业中具有广泛用途,为保证激光扫描器在各种工作状况下都能实现高速度和高重复性扫描,应从扫描器工作原理入手设计匹配的运动控制器.基于这一思想,设计了伺服系统原理图,对位置调节器进行整定并建立了完整的闭环控制的位置随动控制系统.实验证明系统是可行的.
2022-02-25 18:22:26 1.59MB 激光应用 振镜式激 位置随动 自动增益
1
分析了激光成像雷达系统中的微机电系统(MEMS)振镜的振动特性,对影响MEMS振动角度的关键因素:频率和驱动电压对振动角度的影响进行了实验测量。研究结果表明,选择60~200 Hz要求的扫描频率、60 V以上的驱动电压可以实现角度相对较大、同时又能满足系统64~256 s-1分辨率要求。
2021-11-23 15:14:05 1.16MB 成像系统 激光成像 微机电系 频率
1
激光切割设备的控制,在Windows VC和 Linux下的gcc实现方法
2021-11-19 20:58:55 570KB 圆弧插补 激光切割 振镜 VC编程
1
XY2-100振镜控制协议中文详细说明
2021-10-28 22:01:45 356KB XY2-100 振镜控制协议
1
瑞雷振镜的说明书,其他的会陆续上传,是英文版的,希望大家喜欢
2021-09-20 15:25:55 1.15MB 振镜 说明书
1