内容概要:本文详细介绍了2000W~12V大功率电脑电源的设计和技术细节。该电源采用了先进的PFC(功率因数校正)+LLC(谐振式半桥)谐振转换+同步整流技术,实现了高效的大功率输出和低损耗的能量转换。文中不仅解释了各部分的工作原理,如PFC电路、LLC电路和同步整流技术的作用,还提供了完整的PCB电路图参数、变压器参数和BOM清单,确保用户可以准确制作和组装电源。此外,还提供了批量出货稳定方案,确保批量生产的稳定性和一致性。 适合人群:从事电源设计的专业人士、电子工程学生、DIY爱好者。 使用场景及目标:① 学习大功率电脑电源的设计原理和技术细节;② DIY制作大功率电脑电源;③ 批量生产和制造大功率电脑电源。 其他说明:提供的设计方案和资料仅用于学习和参考,在实际应用中需根据具体情况进行调整和改进。
2025-11-18 15:51:36 597KB
1
comsol变压器三维仿真模型文件,电磁仿真,结果空载/短路工况,磁密,饱和特性,损耗,云图曲线图。
2025-11-11 16:05:20 4.72MB comsol 电磁计算 损耗计算
1
"COMSOL多物理场计算模型:单相变压器电磁场与温度场综合分析",comsol 单相变压器电磁场和温度场计算模型,可以得到变压器交流电变化曲线和电磁场、温度场分布, ,comsol;单相变压器;电磁场计算模型;温度场计算模型;交流电变化曲线;电磁场、温度场分布,"Comsol单相变压器电磁场与温度场计算模型" COMSOL多物理场仿真技术是电气工程领域内的一项重要技术,它允许工程师和研究人员在同一个平台上模拟和分析复杂系统中的多个物理场相互作用。本文档关注的是在COMSOL环境中建立的单相变压器模型,该模型能够综合分析变压器中的电磁场和温度场的相互关系。 在单相变压器的电磁场分析中,通常关注的是变压器线圈产生的磁场、涡流效应、磁滞损耗以及电磁力的分布。通过建立准确的电磁模型,可以模拟变压器在交变电流作用下的电磁特性,以及由此产生的交流电变化曲线。这不仅涉及到了磁场的分布情况,还涉及到了电场的分布和相互作用,以及电流密度的计算。 在温度场的计算方面,变压器在运行过程中,由于线圈电阻和铁芯的磁滞损耗,会产生热量,进而影响到变压器的性能和寿命。因此,建立变压器的温度场模型,分析其热分布和热传导过程是至关重要的。这需要考虑到不同材料的热传导率、冷却介质的流动、以及外部环境的热交换条件。 将电磁场计算与温度场计算相结合,可以更加全面地评估变压器的工作状态。例如,可以分析在不同负载和不同冷却条件下,变压器温度场的分布情况,以及温度变化对电磁特性的影响。通过这种方式,可以预测变压器可能出现的热点区域,及时调整设计或运行参数以避免过热。 为了进行这些分析,COMSOL提供了一个强大的多物理场仿真环境,它允许用户定义复杂的几何形状和材料属性,设置不同的边界条件和初始条件,利用偏微分方程求解器进行计算。用户可以通过调整模型参数,优化设计,以达到提升变压器效率和可靠性的目的。 文档列表中的“深入解析单相变压器电磁场与温度.doc”、“探索中的单相变压器电磁场与温度场计算.doc”以及“探索下的单相变压器电磁场与温度场计.html”等文件,很可能是对上述分析过程的具体展开和深入探讨。这些文档可能包含理论分析、仿真模型建立、结果解释和工程应用等方面的详细信息。而“单相变压器电磁场和温度场计算模型可以得到变压器交流.html”这个文件,或许着重于展示模型如何得到交流电变化曲线,以及电磁场、温度场分布的相关信息。 COMSOL多物理场计算模型在单相变压器的设计和分析中,提供了一个全面的工具,能够帮助工程师综合考量电磁和温度这两个关键的物理场,为变压器的高效稳定运行提供理论支持和设计优化的可能。
2025-11-08 10:11:50 804KB scss
1
【技术博客】基于MATLAB Simulink的移相变压器仿真模型,模拟实现可调移相角度的变压器副边36脉波不控整流,MATLAB Simulink仿真模型实现可设置移相角度的变压器副边36脉波不控整流,Phase_Shift_T:基于MATLAB Simulink的移相变压器仿真模型,可实现-25°、-15°……25°的移相。 变压器副边实现36脉波不控整流,变压器网侧电压、阈侧电压以及移相角度可直接设置。 仿真条件:MATLAB Simulink R2015b ,核心关键词: 1. 移相变压器仿真模型 2. MATLAB Simulink 3. 移相 4. 36脉波不控整流 5. 网侧电压 6. 阈侧电压 7. 设置 8. MATLAB Simulink R2015b,MATLAB Simulink中实现宽范围移相与多脉波整流的变压器仿真模型
2025-10-15 09:31:02 3.38MB
1
伺服电机旋转变压器型编码器调零大全:轻松学习各种品牌伺服设计与调零方法,关于旋转编码器型伺服电机的调零方法与原理解析:适用于西门子等进口品牌,轻松学习与实践应用,旋转变压器型编码器旋编调零协议型编码器调零 对于各种进口品牌伺服电机都可以如:西门子,力士乐,abb,keb,多摩川,法那科,伦兹等所有的最新私有协议或接口的都支持 所有旋编调零方法拿了就学会伺服驱动原理 伺服设计工程师亲自讲解,旋转编码器调零 用极简单的实验与易于理解的讲活让你轻松弄懂伺服原理,有兴趣甚至能设计出伺服 一共有6种方法.我的硬件是其中一种,可以不用我的硬件利用你自己现有硬件 最好准备一台任意品牌伺服电机不限编码器类型不限编码器好坏,无编码器也行,一台直流电源通过极简单实验把你带入复杂的伺服运行原 理 以上方法囊括了所有伺服电机的调零希望大家能学会 曾经我不会的时候想学习,很迷茫。 想找很多人学,但是苦于找不到对应的人,也没人愿意花时间教我。 即使我花了大量的时间去研究原理设计,终于一天我理解了,所以我想让很多想学的人更快的学会。 毫不夸张的说其价值远在2000美元以上,所有文字资料均自行编写
2025-10-08 17:21:35 7.42MB
1
利用Comsol进行油浸式变压器的多物理场耦合仿真的方法和技术要点。首先强调了电磁场、温度场和流体场之间的相互关系及其重要性,随后具体讲解了模型搭建的关键步骤,如精确设置线圈参数、考虑材料的非线性属性以及正确配置多物理场耦合节点。接着讨论了流体场的模拟选择,推荐使用k-ε湍流模型并给出合理的边界条件设定建议。最后分享了一些实用的经验教训,比如关注特定位置的油流速度和热点温度限制,同时提出将温度场结果应用于结构力学模块做进一步分析的可能性。 适合人群:从事电力设备研究、设计或维护的专业技术人员,尤其是对变压器性能优化感兴趣的工程师。 使用场景及目标:帮助用户掌握如何运用Comsol软件完成复杂的多物理场耦合仿真任务,确保仿真结果能够准确反映实际运行情况,从而指导产品改进和故障预防。 其他说明:文中不仅提供了详细的参数设置指南,还分享了许多来自实践经验的小贴士,有助于提高仿真的成功率和准确性。
2025-10-02 16:23:03 286KB
1
电力场景电气设备红外图像变压器检测数据集VOC+YOLO格式4271张14类别,是一份详尽的图像数据集,主要用于电力设备检测领域中的变压器检测。这份数据集包含了4271张红外图像,每张图片都对应一张VOC格式的xml文件和YOLO格式的txt文件,用以支持图像的物体识别和定位任务。 数据集采用Pascal VOC格式和YOLO格式结合的方式提供,其中VOC格式包含图像标注的矩形框、类别等信息,而YOLO格式则适用于YOLO系列目标检测算法。数据集中不包含分割路径的txt文件,仅限于图片、VOC格式xml标注文件和YOLO格式txt标注文件。 数据集共标注有14种不同的类别,每个类别都有详细的标注信息,这些类别包括但不限于空气断路器(ACB)、电流互感器(CT)、连接器(Connection)、避雷器(LA)、负荷开关(LBS)等。每张图片中,相应的类别都有对应的矩形框来标定其位置。 具体到每个类别的标注框数,数据集中标注最多的类别为“Connection”,框数达到了3961个,而“core”类别标注的框数最少,为699个。这14个类别总共标注了11896个框。这些数据标注均使用了labelImg工具进行,标注规则是为每个类别画出矩形框。 需要注意的是,尽管这份数据集为电力设备检测提供了极为宝贵的信息和便利,但数据集提供者并不对使用这些数据训练出的模型或权重文件的精度提供任何保证。使用者应自行评估数据集的适用性和准确性,对模型的性能负责。 数据集的使用场景主要集中在电力设备,尤其是变压器的检测工作。通过这些红外图像和对应的标注,研究人员和工程师可以构建和训练目标检测模型,以实现对电力设备缺陷和异常状态的自动检测。这不仅提高了检测的效率,而且对于保障电力系统的稳定运行和预防事故的发生都具有重要的意义。 值得注意的是,该数据集的下载地址为下载.csdn.net/download/2403_88102872/90089745。这一资源对于需要进行相关研究的科研人员和工程师来说是一个宝贵的资料库。
2025-09-25 13:38:47 1006KB 数据集
1
(1)对脉冲变压器重要要求的是脉冲波形上升、下降及平坦特性,满足这三项要求应注意以下几点:   1)为了减小波形失真要利用磁化特性的线性部分,磁通密度应取低一些。   2)为了得到良好的低频特性,要选用较大电感,为此,选用高磁导率的铁心(励磁阻抗大),并增加绕组的匝数。   3)为了得到良好的高频特性,绕组的分布电容与漏感要小,要注意绕组的绕制方法,并减少绕组的匝数。   4)由于铁心的磁通密度随输入电压而变化,磁导率也变化,于是电感发生变化。尤其是被直流磁化时,铁心应留有气隙,从而减小电感的变化率。   (2)变压器的漏感降低了变压器的变换效率,而且增大了噪声,为此,要尽量减小漏感 电源技术中的脉冲变压器设计是电力电子领域中的关键环节,其性能直接影响到系统的稳定性和效率。脉冲变压器的主要任务是传输脉冲信号,因此,其波形上升、下降特性和平坦性至关重要。以下是对这些要点的详细解释: 1. 波形失真控制: 要减小波形失真,设计时需要充分利用磁化特性的线性部分。这意味着磁通密度应该选取在较低的水平,以避免非线性磁饱和现象导致的波形畸变。 2. 低频特性优化: 为了改善低频响应,需要选择具有较大电感的变压器。这通常通过选用高磁导率的铁心实现,因为高磁导率材料能提供更大的励磁阻抗,同时增加绕组的匝数,进一步增强电感效果。 3. 高频特性提升: 在高频环境下,绕组的分布电容和漏感成为主要考虑因素。为了降低这两者,应当精心设计绕组的排列方式,减少绕组匝数,以减小分布电容的影响,并提高频率响应。 4. 磁通密度与电感变化: 铁心的磁通密度会随输入电压改变,导致磁导率变化,从而影响电感。在设计中,特别是在处理直流磁化情况时,可以引入气隙来减少因磁通密度变化引起的电感变化,以保持电感的稳定性。 5. 漏感的降低: 漏感不仅降低变压器的转换效率,还可能导致噪声增大。为了减少漏感,可以采取以下措施: - 使用高磁导率的铁心,减少匝数。 - 采用扁平导线绕制,增加层数,减少每层的匝数。 - 减小一次和二次绕组之间的间距。 - 保持一次和二次绕组在每层的宽度相等,以实现磁动势平衡。 - 在同一层上同时绕制一次和二次绕组,确保安匝数平衡。 6. 分布电容的管理: 分布电容同样会影响变压器性能,需要通过以下策略进行控制: - 增大一次和二次绕组之间的间隔。 - 在不影响漏感的前提下,减小绕组每层的宽度,增加层数。 在实际设计中,减小分布电容与降低漏感之间可能存在冲突,因此需要找到一个折中的解决方案,以兼顾两者的需求,实现最佳性能。 脉冲变压器的设计是一项综合考虑磁特性、电感、漏感和分布电容等多方面因素的复杂任务。通过精细调整和优化这些参数,可以制造出能够满足特定应用需求的高效、低噪声脉冲变压器
1
开关变压器变压器线圈电感量计算-陶显芳pdf,开关变压器变压器线圈电感量计算-陶显芳
2025-09-22 22:12:28 855KB 开关电源
1
比如新手工程师张三对于开关电源变压器的计算还没有很好的理解,去请教李四和王五,然后李四给了一套计算公式给张三,王五也给了一套计算公式给张三。然后张三分别按照两个人给的公式兴致勃勃的算了起来,算出来之后,发现两套公式计算出来的电感量根本不相同,且相差了不少,到底是李四对还是王五对?   我设计开关电源也有一些年份了,接触开关电源的新手也比较多,而新手问得多的一个问题就是变压器怎么计算,而变压器计算中问得多的一个问题就是,上面提到的感量不一样的问题。我可以这么说,只要有这个疑问的电源工程师,那么一定说明你是新手,一定没有掌握变压器的设计方法。其实两个工程师计算出来的电感量不相同是很正常的,我甚至
2025-09-22 22:07:39 119KB
1