该交通数据集来源于PeMS网站,包含圣贝纳迪诺市(美国加利福尼亚州南部一座城市)8条高速公路1979个探测器,2016年7月1日至2016年8月31日这2个月的数据。这些传感器每5分钟收集一次数据,包含1979个所有的传感器每5分钟经过的车辆数。 数据集 节点 特征数 时长 时间窗口 PeMSD8 107 3 61天 5min 此外本数据集还包含一个3*107的邻接矩阵文件,该数据表示了107个路口之间的相邻情况(即连通性) 以及节点之间的距离。 可用于交通流量预测、交通速度预测、交通拥堵情况预测、交通信号灯绿信比条件、时间序列分析、时空序列分析
2024-09-04 22:13:20 17.45MB 数据集 数据挖掘 交通预测 深度学习
1
该交通数据集来源于PeMS网站,包含旧金山湾区(美国加尼福尼亚州旧金山大湾区)29条高速公路3848个探测器,2018年1月1日至2018年2月28日这2个月的数据。这些传感器每5分钟收集一次数据,包含3848个所有的传感器每5分钟经过的车辆数。 数据集 节点 特征数 时长 时间窗口 PeMSD4 307 3 59天 5min 此外本数据集还包含一个307*307的邻接矩阵文件,该数据表示了307个路口之间的相邻情况(即连通性) 以及节点之间的距离。 可用于交通流量预测、交通速度预测、交通拥堵情况预测、交通信号灯绿信比条件、时间序列分析、时空序列分析
2024-09-04 22:12:25 31.14MB 数据集 数据挖掘 交通预测 深度学习
1
Dijkstra算法python实现,基于邻接矩阵及优先队列 不仅能够求解其实节点到各个节点的最短路径长度,而且并确定各条最短路径上的节点信息
2024-08-23 11:13:41 5KB python Dijkstra 图与网络
1
在给定的压缩包"基于弧邻接矩阵的快速椭圆检测_C++_Python_下载.zip"中,我们可以推测这是一个关于计算机视觉领域的项目,重点在于实现快速的椭圆检测算法。这个项目可能提供了C++和Python两种编程语言的实现代码,并且包含了一个名为"AAMED-master"的子目录或文件,这通常表示它是一个开源项目或者代码库。 **椭圆检测**是图像处理和计算机视觉中的一个重要任务,用于识别图像中椭圆形的形状。在各种应用场景中,例如工业检测、医学影像分析、自动驾驶等,椭圆检测都有其独特的价值。传统的椭圆检测方法包括霍夫变换、最小二乘法等,但这些方法在处理复杂背景或大量椭圆时效率较低。 **弧邻接矩阵**是一种用于表示图像中像素间连接关系的数据结构,尤其适用于边缘检测和形状识别。它记录了图像中每个像素与其相邻像素之间的连接情况,通过分析这些连接关系,可以有效地找到潜在的边缘或曲线。在椭圆检测中,弧邻接矩阵可以用来追踪连续的边缘点,进一步推断出可能的椭圆轮廓。 **AAMED**(假设是"Angle-Adjusted Arc-based Edge Detector"的缩写)可能是这个快速椭圆检测算法的名字,它可能采用了优化的弧邻接矩阵来提高检测速度和精度。AAMED算法可能包括以下步骤: 1. **预处理**:对输入图像进行灰度化、噪声去除和边缘检测,为后续的弧邻接矩阵构建提供基础。 2. **弧邻接矩阵构建**:根据预处理后的边缘,建立弧邻接矩阵,记录像素间的连接信息。 3. **弧段提取**:通过分析弧邻接矩阵,找出连续的边缘点,形成弧段。 4. **形状分析**:对提取的弧段进行角度调整和形状匹配,判断其是否符合椭圆特征。 5. **椭圆参数估计**:对于满足椭圆条件的弧段,计算其对应的椭圆参数,如中心位置、半长轴和半短轴。 6. **后处理**:可能包括椭圆的细化、去噪以及重叠椭圆的合并等步骤,以提高检测结果的质量。 在C++和Python实现中,开发者可能使用了OpenCV等图像处理库,它们提供了丰富的函数来支持图像操作和形状检测。C++版本可能更注重性能,而Python版本可能更便于快速开发和调试。 为了深入理解和应用这个椭圆检测算法,你需要解压文件,阅读项目的文档,理解算法原理,并可能需要具备一定的C++和Python编程基础。此外,熟悉OpenCV库和其他图像处理工具也会对理解这个项目有所帮助。通过学习和实践这个项目,你可以掌握椭圆检测的核心技术,并可能将其扩展到其他形状的检测或者应用到实际问题中。
2024-07-10 11:29:51 959KB
PEMS 数据集是由美国加利福尼亚州的交通部门联合其他伙伴机构建立的统一公开交通数据库。美国加利福尼亚州的交通部门在交通路网上大约设置了超过39000 个交通监测站,交通管理部门安装在路网上的各类传感器可以实时地收集所在高速公路上的交通状况信息,越是接近市区人口密集的地区,传感器布置的也越密集,从分布上来看,这些传感器大多被安置在靠近市区的路段上。PEMS提供了超过十年的历史交通状况数据,整合了有关加州运输公司以及其他交通机构系统的各类信息。 PemsD7 交通数据集:数据由分布在加利福尼亚州高速公路系统(CalTrans)中选择 228 个站点数据。数据集从30 秒的数据样本聚合到5 分钟的时间间隔内。时间范围在 2012 年5 月和6 月的工作日的228 个站点交通速度信息,数据包括邻接矩阵和特征矩阵。 邻接矩阵是通过分析已有时空交通数据的特性,构建一种新的具有相似交通流量模式的 矩阵,特征矩阵是每个传感器节点的时间序列特征矩阵。
2024-06-24 10:18:24 40.78MB 深度学习 交通预测 数据挖掘 交通网络
1
PEMS 数据集是由美国加利福尼亚州的交通部门联合其他伙伴机构建立的统一公开交通数据库。美国加利福尼亚州的交通部门在交通路网上大约设置了超过39000 个交通监测站,交通管理部门安装在路网上的各类传感器可以实时地收集所在高速公路上的交通状况信息,越是接近市区人口密集的地区,传感器布置的也越密集,从分布上来看,这些传感器大多被安置在靠近市区的路段上。PEMS提供了超过十年的历史交通状况数据,整合了有关加州运输公司以及其他交通机构系统的各类信息。 PemsD3 交通数据集:数据由分布在加利福尼亚州高速公路系统(CalTrans)中选择 228 个站点数据。数据集从30 秒的数据样本聚合到5 分钟的时间间隔内。时间范围在 2012 年5 月和6 月的工作日的228 个站点交通速度信息,数据包括邻接矩阵和特征矩阵。 邻接矩阵是通过分析已有时空交通数据的特性,构建一种新的具有相似交通流量模式的 矩阵,特征矩阵是每个传感器节点的时间序列特征矩阵。
2024-05-12 15:41:48 14.68MB 深度学习 数据挖掘 交通预测 交通网络
1
利用networkx,numpy,matplotlib,将邻接矩阵输出为图形。 1,自身确定一个邻接矩阵,然后通过循环的方式添加变,然后输出图像 import networkx as nx import matplotlib.pyplot as plt import numpy as np G = nx.Graph() Matrix = np.array( [ [0, 1, 1, 1, 1, 1, 0, 0], # a [0, 0, 1, 0, 1, 0, 0, 0], # b [0, 0, 0, 1, 0, 0, 0, 0], # c [0, 0, 0,
2024-04-17 20:05:57 114KB python
1
第九章 电磁兼容/电磁干扰实例 第一节 散热片 这个例子教你如何在 HFSS 设计环境下创建、仿真、分析散热片。 随着高功率和微波时钟的快速发展,研究散热片发射微电子变得十分必要。接下来我们研究一个单 点接地结构的性能。下图详细描述了这个静态装置,你也即将要创建它: F.9.1.1 微波仿真论坛 组织翻译 第 449 页
2023-10-29 20:39:32 25.27MB hfss 仿真
1
以文件操作输入邻接矩阵存储的无向图,广度和深度的递归遍历
2023-05-15 17:51:10 42KB 广度 深度 文件 无向图
1
基于弧邻接矩阵的快速椭圆检测 提出了一种基于弧邻接矩阵的快速椭圆检测方法。 我们已经在某些应用中成功使用了这种方法,例如卫星跟踪,UGV制导和姿态估计。 :smiling_face_with_smiling_eyes: 可以从最新版本中下载Matlab和Python的二进制文件。 1编译我们的代码 我们已经成功地将AMED应用于各种平台(Windows,Ubuntu,ARM)。 用于不同平台的代码可能需要进行一些细微的更改。 1.1 Windows OpenCV> 3.1.0 VS 2015 您可以将所有.h和.cpp文件添加到您的项目中。 不要忘记配置有关OpenCV项目:)。 main.cpp给出了一个从图像中检测椭圆的示例。 AAMED aamed(drows,dcols) 。 卓尔(dcols)必须大于所有已使用图像的行(cols)。 然后,我们可以使用aamed.run_FLED(imgG); 从多个图像中检测椭圆。 非常重要
1