树莓派自己编译的64位的onnxruntime-1.14.1 python3.9的whl轮子,有需要的可以自取,我不知道你们能不能用
2024-12-01 19:24:33 4.89MB onnx onnxruntime 1.14.1
1
要想使 python 可以操作 mysql 就需要 MySQLdb 驱动,它是 python 操作 mysql 必不可少的模块。
2024-12-01 11:37:22 1.22MB mysqlclient
1
xformers-0.0.16.dev421-cp310-cp310-manylinux2014_x86_64.whl
2024-11-15 22:31:15 59.75MB
1
Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
2024-11-15 22:20:19 777KB
1
tomcat安装及配置教程
2024-11-14 17:41:59 403.05MB tensorflow tensorflow
1
标题中的“onnxruntime-gpu-1.18.0-cp38-cp38-linux-aarch64.whl.zip”是一个针对GPU优化的ONNX运行时库的压缩包,版本为1.18.0,适用于Python 3.8,并且是为Linux上的ARM架构(aarch64)设计的。ONNX(Open Neural Network Exchange)是一个开放的模型交换格式,它允许在不同的深度学习框架之间共享和运行模型。ONNX运行时则是用来执行这些模型的库。 描述中提到“适用JetPack 5.1.2”,JetPack是NVIDIA为Jetson系列嵌入式计算平台提供的软件开发套件,包含Linux操作系统、驱动程序、CUDA、cuDNN等。 JetPack 5.1.2是其中的一个特定版本,它包含了对Jetson设备的优化支持。同时,警告不要升级Jetson系统默认的Python 3版本,因为这个版本的ONNX运行时已经针对该特定Python环境进行了编译和优化,升级可能导致兼容性问题。 “标签”中的“linux”表明这是一个与Linux操作系统相关的软件包。 在压缩包内的文件“onnxruntime_gpu-1.18.0-cp38-cp38-linux_aarch64.whl”是一个Python的whl(wheel)文件,它是预编译的Python包格式,可以直接用pip安装,无需编译源代码。这个文件包含了ONNX运行时的GPU版本,适合在Linux环境下运行GPU加速的深度学习模型。 另一个文件“使用说明.txt”可能是关于如何在JetPack 5.1.2和Python 3.8环境中安装和使用ONNX运行时GPU版的指南。通常,它会包含以下步骤: 1. 确保你的Jetson设备已经更新到JetPack 5.1.2,并且保持Python 3.8不变。 2. 解压下载的“onnxruntime-gpu-1.18.0-cp38-cp38-linux-aarch64.whl.zip”压缩包。 3. 进入解压后的目录,找到“onnxruntime_gpu-1.18.0-cp38-cp38-linux_aarch64.whl”文件。 4. 使用pip安装whl文件: ``` pip install onnxruntime_gpu-1.18.0-cp38-cp38-linux_aarch64.whl ``` 5. 安装完成后,你可以通过导入`onnxruntime`模块来使用ONNX运行时,例如: ```python import onnxruntime ``` 6. 根据你的模型,创建会话实例并进行预测: ```python sess = onnxruntime.InferenceSession("path_to_your_model.onnx") output = sess.run(None, {"input_name": input_data}) ``` 7. 查看“使用说明.txt”以获取更多关于配置、性能调优以及解决常见问题的指导。 这个压缩包提供了在NVIDIA Jetson平台上运行ONNX模型所需的GPU加速的ONNX运行时库,适用于那些需要在边缘设备上进行高效推理的工作场景。遵循提供的说明,开发者可以轻松地将预训练的深度学习模型部署到Jetson设备上。
2024-10-24 17:24:00 68.05MB linux
1
Python3.7版本对应的PyQt5的轮子文件
2024-10-22 11:54:46 6.52MB PyQt5
1
pyopengl windows x64 whl安装包 本资源提供了python3.9和3.10版本,x64位安装包。 官方的下载地址已经失效 http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyopengl
2024-10-22 11:09:45 5.13MB windows
1
64位 pywin32-223-cp37-cp37m-win_amd64.whl  
2024-10-17 14:56:59 8.53MB pywin32-223-
1
资源分类:Python库 所属语言:Python 资源全名:PyMuPDF-1.18.14-cp37-cp37m-macosx_10_9_x86_64.whl 资源来源:官方 安装方法:https://lanzao.blog.csdn.net/article/details/101784059
2024-10-17 14:05:08 5.31MB python 开发语言 Python库
1