本工程是我在2022年6月11日上传的“驱动程序:硬件SPI控制AD7124”代码的改进版本,解决了下列问题: 1. 提高了AD7124在每秒的采样次数; 2. 解决了在PGA=1的情况下,采集大于+2V和<-2V出现的失真问题; 3. 优化了主程序架构,使main.c文件内的代码更加简洁; 4. 优化了AD7124时钟速率,AD7124的读取速率最大达到1.125MHz。 IDE:Keil MDK5; 硬件:STM32F103C8T6,所用SPI为SPI2; 未使用AD7124的同步模式。 在数字信号处理和模拟系统集成领域中,AD7124是一个高性能、低噪声、多通道模拟前端(AFE)。它的主要用途是为传感器提供精确的信号调理,从而能够将物理量转换为数字信号。AD7124能够执行精确的模数转换,并且通过硬件SPI(串行外设接口)与微控制器通信。硬件SPI是一种常用的通信协议,广泛应用于微控制器与外设设备之间的高速数据传输。该协议通过较少的引脚来实现数据通信,提高了通信效率并降低了系统成本。 本工程是在原有基础上的改进版本,改进点包括提高了AD7124的每秒采样次数,这是通过优化内部寄存器的设置来实现的,从而提高了数据采集的频率。在编程上,对于PGA(可编程增益放大器)的设置为1时出现的+2V和-2V信号采集失真问题,进行了细致的调试和算法优化,以确保信号在较大动态范围内的准确度。同时,对主程序的架构也进行了优化,使得main.c文件的代码更加清晰和有条理,便于后续的维护与开发。此外,通过优化AD7124的时钟速率,使得其最大读取速率达到了1.125MHz,这进一步提升了数据处理的效率。 在这个工程中,所使用的硬件为STM32F103C8T6微控制器,这是STMicroelectronics生产的一款基于ARM Cortex-M3内核的高性能微控制器。该控制器的一个重要特点是有多个支持SPI通信的引脚,其中SPI2在本工程中被采用。STM32F103C8T6的高性能与低功耗特性使其成为许多嵌入式系统应用的理想选择。 此工程并未采用AD7124的同步模式,同步模式指的是多个设备通过同一个时钟信号同步工作。不使用同步模式意味着在通信时对设备的时序要求较高,但同时也能减少因同步问题导致的信号失真和数据传输错误。 由于AD7124的多通道读取功能,本工程的文件名称为ad7124_MultiChannel,表明其能够处理多个通道的信号,并且能够同时读取每个通道的数据。这对于需要处理多路信号的工业应用非常重要,如在医疗设备、工业控制和精密测量等场合。 这项改进工程不仅提升了AD7124的工作性能,还优化了整个系统的数据处理流程。对于需要高质量模拟前端信号处理的应用场景,这种优化能够显著提高系统的精确度和可靠性。同时,采用的Keil MDK5作为开发环境,其强大的调试工具和优化能力也为该工程的成功提供了有力的支持。 总结而言,驱动程序的改进涉及到了硬件性能的提升、信号处理精度的增强和软件架构的优化。这些改进不仅使系统更加高效,也确保了在各种应用场景中能稳定可靠地使用。工程师通过软件的调整和优化,充分发挥了硬件的潜力,提升了整个系统的性能,对于工程师和用户来说都是一个值得高兴的改进。
2025-04-30 15:47:44 3MB AD7124 硬件SPI STM32
1
48K采样点,16bit位宽,双通道 的pcm测试文件, 这个pcm文件是歌曲《成都》的声音, 可以使用Adobe Audtion或其他声音分析软件进行播放; 使用与音视频开发。 无损音频: PCM文件是一种无损音频格式,它们以原始音频采样的形式存储音频数据,不进行任何压缩或编码。这使得PCM文件的音质非常高,但文件尺寸较大。 采样率和位深度: PCM文件通常包括音频数据的采样率和位深度信息。采样率表示每秒采集的音频样本数量,而位深度表示每个采样的数据精度。常见的位深度包括16位、24位和32位。更高的位深度可以提供更好的音频质量,但也会增加文件大小。 通道数: PCM文件可以是单声道(单通道)或立体声(双通道),也可以包含更多通道,如多通道音频文件,以支持环绕声等音频效果。 文件扩展名: PCM文件通常具有常见的文件扩展名,如.wav(Windows的Wave文件格式)或.raw(原始PCM数据文件)。这些扩展名有助于操作系统和应用程序识别文件格式。 广泛支持: 由于其简单的无损特性,PCM文件在各种音频应用中得到广泛支持,包括音乐制作、音频编辑、游戏开发和多媒体应用程序。
2025-04-25 11:37:19 21.1MB ALSA
1
FMC ADC12D2000RF 模块,忍痛出射频直接采集FMC ADC模块,模块基于Ti公司高端ADC12D2000RF芯片,芯片为单通道4GSPS,双通道2GSPS,12bit分辨率,这款芯片国内是封锁的,绝版。 忍痛出。 提供开发包,数据手册,接口VHDL源代码,驱动程序,上位机MATLAB调用代码,非常优秀。 Ti公司推出的ADC12D2000RF是一款高性能的模数转换器(ADC),其设计用于支持高速射频直接采样应用。该芯片具备单通道采样速率高达4GSPS(千兆样点每秒)和双通道采样速率高达2GSPS的性能,以及12bit的高分辨率。ADC12D2000RF适用于需要处理高速和高精度信号的领域,例如雷达、无线通信、卫星通信和测试测量设备。 由于其卓越的技术规格,ADC12D2000RF芯片在国内市场具有较高的应用价值和稀缺性,甚至出现了封锁和供应紧张的情况。这种芯片在市场上已经成为绝版,因此,即使是企业或个人在遇到库存或项目变动时,也十分不舍地出售这类产品。 FMC ADC12D2000RF模块利用了这款ADC12D2000RF芯片的高性能,面向开发者提供了全面的开发支持。模块附带了一系列的开发资源,包括开发包、数据手册、接口VHDL源代码、驱动程序,以及MATLAB调用代码。这些资源的提供大大降低了用户进行开发的门槛,缩短了产品开发周期,提高了开发效率。 在技术应用方面,该模块的高采样率和高分辨率特点使其在多种应用领域具备显著优势。例如,在无线通信领域,它可以帮助工程师设计出能够应对快速信号变化的通信系统。在雷达系统中,高采样率可以确保捕获快速运动目标的信号,而高分辨率则有助于区分小的信号差异。在测试和测量设备中,这类模块能够准确地捕捉到信号的细节,用于分析和验证复杂电路和系统的性能。 另外,该模块还可能适用于电子对抗、光通信、频谱分析、软件定义无线电等专业领域,为这些领域内的工程师和研究者提供重要的技术支持。 根据文件提供的图片文件列表,可见该模块的文档和资料中不仅包括了技术描述文档,还可能包含了相关的图片,这些图片可能涉及模块的实物图、电路板设计图或信号分析图等,用以帮助用户更好地理解模块的外观、结构和功能。 值得一提的是,由于该模块采用了性能优异的ADC芯片,因此其市场价格可能较高,对于预算有限的用户来说,提供完整的开发支持和文档资源,能够在一定程度上弥补成本上的支出,使得用户能够更专注于产品设计和应用开发。 FMC ADC12D2000RF模块集合了高性能ADC芯片、全面的开发支持和丰富的技术文档,使其成为了在射频直接采样领域内不可多得的开发工具,尤其适合那些对信号处理有高要求的应用场合。尽管这款芯片在国内供应紧张,但模块提供的完备资源为用户提供了极大的便利,有助于加速高性能电子设备的开发进程。
2025-04-15 23:22:58 2.73MB 开发语言
1
unity导出透明通道图插件,非常实用, unity导出png带透明通道图, unity各个版本都支持,Window/Taecg/Image Exporter(序列图导出).或者使用快捷键(Ctrl+M)打开.
2025-03-26 02:26:52 6KB unity
1
ADS54J60高速采集卡:原理图、PCB、代码及FPGA源码集成,4通道1Gbps 16bit高速ADC与直接制板功能,ADS54J60高速采集卡:四通道FMC子卡原理图、PCB及FPGA源码设计,直接制板应用,ADS54J60 高速采集卡 FMC 1G 16bit 4通道 采集子卡 FMC子卡 原理图&PCB&代码 FPGA源码 高速ADC 可直接制板 ,核心关键词:ADS54J60; 高速采集卡; FMC 1G 16bit 4通道; 采集子卡; FMC子卡; 原理图; PCB; 代码; FPGA源码; 高速ADC; 可直接制板。,“基于FPGA的高速采集子卡设计:ADS54J60四通道FMC 1G ADC板”
2025-02-26 11:31:24 573KB 正则表达式
1
《电子-ALIENTEK MINISTM32 ADC+DMA 8通道显示》 在现代电子技术领域,STM32系列微控制器因其强大的性能和丰富的资源而广受青睐,特别是对于单片机和嵌入式系统设计。在这个项目中,我们探讨的是如何在ALIENTEK MINISTM32平台上实现ADC(模拟数字转换器)与DMA(直接存储器访问)的结合,以高效地处理8通道的模拟信号,并进行实时显示。 STM32系列是基于ARM Cortex-M内核的微控制器,涵盖从F0到F4等多个系列。F0、F1、F2作为入门级产品,性价比高,适用于众多嵌入式应用。在这个项目中,我们关注的是F0、F1、F2这三个系列,它们都支持ADC和DMA功能,但具体特性可能有所差异,例如ADC的精度、通道数和DMA的通道配置等。 ADC(模拟数字转换器)是将连续变化的模拟信号转换为离散的数字信号的关键组件。在ALIENTEK MINISTM32上,ADC模块可以采集多个模拟输入信号,通过配置不同的通道选择,实现对多个传感器数据的采集。在本项目中,我们将使用8个通道的ADC,这意味着我们可以同时监测8个不同的模拟源,比如温度传感器、压力传感器等。 DMA(直接存储器访问)则是一种提高数据传输效率的技术,它允许数据在内存和外设之间直接传输,而无需CPU的干预。在STM32中,DMA可以配合ADC使用,自动将转换后的数字数据传输到内存,极大地减轻了CPU负担,使得CPU可以专注于其他更重要的任务。 8通道显示部分,通常意味着数据会实时更新并在LCD或OLED显示屏上呈现,这可能涉及到串行接口如SPI或I2C与显示器的通信,以及适当的GUI库或者自定义的显示算法。在实际操作中,开发者需要考虑如何有效地更新屏幕,防止过度刷新导致的闪烁,同时优化数据显示的性能。 为了实现这一功能,开发者需要掌握以下几个关键步骤: 1. **ADC配置**:配置ADC的工作模式,如连续转换、单次转换等,以及选择合适的采样时间、分辨率等参数。 2. **DMA配置**:设置DMA通道,指定源(ADC转换结果寄存器)和目标(内存地址),并设置传输完成中断。 3. **中断处理**:当DMA传输完成后,通过中断服务程序更新显示数据。 4. **显示驱动**:根据所选的显示设备,编写相应的驱动程序,将数字数据转化为屏幕可见的图像。 5. **实时性优化**:合理安排任务优先级,确保数据的实时更新和显示。 ALIENTEK MINISTM32 ADC+DMA 8通道显示项目,不仅展示了STM32的强大功能,也为我们提供了一个学习和实践嵌入式系统开发的宝贵案例。通过这个项目,开发者不仅可以深入了解STM32的ADC和DMA特性,还能锻炼到硬件接口设计、中断处理和实时系统优化等多方面技能。在实际应用中,这样的技术可以广泛应用于环境监控、工业控制、物联网等领域,实现对多个物理量的实时监测和处理。
2024-12-13 21:37:20 4.44MB 单片机/嵌入式STM32-F0/F1/F2专区
1
24位、4通道模数转换、数据采集系统概述: 在过程控制和工业自动化应用中,±10 V满量程信号非常常见;然而,有些情况下,信号可能小到只有几mV。用现代低压ADC处理±10 V信号时,必须进行衰减和电平转换。但是,对小信号而言,需要放大才能利用ADC的动态范围。因此,在输入信号的变化范围较大时,需要使用带可编程增益功能的电路。 该电路设计是一种灵活的信号调理电路,用于处理宽动态范围(从几mV p-p到20 V p-p)的信号。该电路利用高分辨率模数转换器(ADC)的内部可编程增益放大器(PGA)来提供必要的调理和电平转换并实现动态范围。 该电路包含一个ADG1409多路复用器、一个AD8226仪表放大器、一个AD8475差动放大器、一个AD7192 Σ-Δ型ADC(使用ADR444基准电压源)以及 ADP1720稳压器。只需少量外部元件来提供保护、滤波和去耦,使得该电路具有高集成度,而且所需的电路板(印刷电路板[PCB])面积较小 适合宽工业范围信号调理的灵活模拟前端电路: 如上所示电路解决了所有这些难题,并提供了可编程增益、高CMR和高输入阻抗。输入信号经过4通道ADG1409 多路复用器进入 AD8226低成本、宽输入范围仪表放大器。AD8226低成本、宽输入范围仪表放大器。AD8226提供高达80dB的高共模抑制(CMR)和非常高的输入阻抗(差模800ΩM和共模400ΩM)。宽输入范围和轨到轨输出使得AD8226可以充分利用供电轨。 24位、4通道模数转换、数据采集系统附件内容截图:
2024-11-07 17:06:25 2.76MB 电路方案
1
【基于yolov5的RGBDIR四通道茶叶嫩芽检测模型】是一种先进的计算机视觉技术,应用于茶叶生产领域,用于自动检测茶叶嫩芽的质量和数量。该模型利用了深度学习框架yolov5的强大功能,结合RGB(红绿蓝)和DIR(深度、红外、红边)四通道图像数据,提高了在复杂背景下的识别精度。 YOLO(You Only Look Once)是一种实时目标检测系统,由Joseph Redmon等人首次提出。YOLOv5是其最新版本,相比之前的版本,它具有更快的速度和更高的准确性。这个模型采用了单阶段检测方法,可以同时进行分类和定位,大大简化了检测流程,提升了效率。 RGBDIR四通道数据集包含四种不同类型的图像信息:RGB(常规彩色图像),深度图(反映物体距离的图像),红外图(捕捉热辐射,对温度敏感),以及红边图(强调植物生长状态)。这些多通道数据提供了丰富的信息,有助于模型更准确地识别茶叶嫩芽,尤其是在光照条件不佳或背景复杂的情况下。 Python作为实现该模型的主要编程语言,是因为Python拥有强大的数据处理和科学计算库,如NumPy、Pandas和Matplotlib,以及深度学习库如TensorFlow和PyTorch。YOLOv5就是在PyTorch框架下实现的,PyTorch以其动态计算图和友好的API深受开发者喜爱。 在项目"Tea_RGBDIR_v5_4ch-master"中,我们可以找到以下关键组成部分: 1. 数据集:可能包含训练集、验证集和测试集,每部分都含有RGBDIR四通道的图像,用于训练和评估模型性能。 2. 模型配置文件(如 yolov5/config.py):定义了网络架构、超参数等,可以根据具体需求调整。 3. 训练脚本(如 train.py):负责加载数据、初始化模型、训练模型并保存权重。 4. 检测脚本(如 detect.py):使用预训练模型对新的图像或视频进行茶叶嫩芽检测。 5. 工具和实用程序:可能包括图像预处理、结果可视化、性能评估等功能。 通过这个项目,开发者和研究人员可以学习如何利用深度学习解决农业领域的实际问题,提高茶叶生产过程的自动化水平,减少人工成本,并确保茶叶品质的一致性。同时,这个模型也具有一定的通用性,可以推广到其他作物的检测任务中。
2024-11-05 19:13:14 385KB python
1
unity默认管线
2024-10-23 23:54:32 1.63MB unity
1
STM32F407是意法半导体(STMicroelectronics)推出的一款基于ARM Cortex-M4内核的微控制器,广泛应用于嵌入式系统设计。在本项目中,我们关注的是其高级数字转换器(ADC)功能,特别是多通道数据采集与DMA(直接内存访问)传输的结合,以及如何通过ADC测量获取的信号来估算CPU温度的均值。 ADC在STM32F407中的作用是将模拟信号转化为数字信号,这对于实时监测物理参数如电压、电流或温度至关重要。STM32F407内置多个ADC通道,可以同时对多个输入源进行采样,提高数据采集的效率和精度。ADC配置包括选择通道、设置采样时间、分辨率和转换速率等参数。 多通道ADC采集意味着我们可以同时从不同的传感器读取数据,例如,一个系统可能包含多个温度传感器分布在不同位置以监测CPU和周边环境的温度。每个通道的配置都需要独立设置,并且可以按照预定义的顺序或者并行方式进行转换。 接下来,DMA在STM32F407中的应用是为了减少CPU负担,实现数据的自动传输。在ADC采集过程中,一旦转换完成,数据可以直接通过DMA控制器传输到内存,而无需CPU干预。这种方式提高了系统的实时性能,因为CPU可以专注于其他更重要的任务,而数据处理则在后台进行。 要计算CPU温度的均值,我们需要对来自多个温度传感器的数据进行平均。在STM32F407中,这可以通过在内存中累积所有ADC转换结果,然后除以传感器的数量来实现。为了确保计算的准确性,可能还需要考虑ADC转换误差和温度传感器本身的漂移。此外,如果ADC的结果是12位或16位,可能需要进行适当的位右移以获得浮点或整数均值。 为了实现这一功能,编程时应创建一个循环,该循环会触发ADC转换,等待转换完成,然后通过DMA将数据传送到内存缓冲区。在缓冲区填满后,可以进行平均计算,并更新CPU温度的均值。这个过程可能需要在中断服务程序中执行,以便在每次新的ADC转换完成后处理数据。 在实际项目中,还可能需要考虑以下几点: 1. **数据同步**:确保所有传感器在同一时刻或几乎同一时刻采样,以减少因采样时间差异导致的温度偏差。 2. **滤波**:应用低通滤波器或其他滤波算法以去除噪声,提高温度测量的稳定性。 3. **误差校正**:可能需要根据实际应用场景对ADC读数进行温度传感器的校准,以得到更准确的温度读数。 4. **电源管理**:考虑到功耗,合理安排ADC和DMA的唤醒与休眠模式,特别是在低功耗应用中。 通过以上分析,我们可以看到,STM32F407ADC多通道采集配合DMA传输是一种高效且实用的方法,用于嵌入式系统中获取和处理多个传感器的数据,尤其是当需要实时监控CPU温度时。在具体实施过程中,需要综合考虑硬件配置、软件编程以及误差处理等多个方面,以确保系统的可靠性和性能。
2024-09-21 22:49:08 3.51MB stm32 均值算法 文档资料 arm
1