我在训练yolov5 的时候,自己拍摄视频,提取帧,标记,划分训练集数据集,其中训练集1600张左右,验证集170张左右。标记使用的是labelimg,包含yoloTXT、Xml两种标注文件。可用于手势识别等。 剪刀、石头、布又称“猜丁壳”,是一个猜拳游戏。古老而简单,这个游戏的主要目的是为了解决争议,因为三者相互制约,因此不论平局几次,总会有胜负的时候。游戏规则中,石头克剪刀,剪刀克布,布克石头。 YOLO是当前目标检测领域性能最优算法的之一,几乎所有的人工智能和计算机视觉领域的开发者都需要用它来开发各行各业的应用。 YOLO的优势在于又快又准,可实现实时的目标检测。
2024-09-06 20:41:19 270.26MB 数据集 yolo 石头剪刀布 labelimg
1
数据集、模型及配置文件
2024-05-20 17:12:06 211.42MB
1
YOLOV8 安全帽佩戴检测(含训练好的模型和训练集
2024-05-20 08:51:58 252.24MB
1
农产品价格明细数据集、训练集
2024-04-21 12:18:57 113KB 数据集
1
BDD100K数据集。BDD100K(Berkley DeepDrive 100K)是一个大规模的自动驾驶数据集,由加州大学伯克利分校的Berkley DeepDrive项目团队创建。该数据集旨在为自动驾驶研究提供大量的真实世界驾驶场景数据。 BDD100K数据集包含超过10万个视频序列,涵盖了不同地点、不同天气条件、不同场景的驾驶情况。每个视频序列都配备了高分辨率的前置摄像头记录的图像和对应的传感器数据,如GPS位置、车辆速度、车辆加速度等。这使得研究人员可以在真实世界的多样化驾驶场景中进行算法和模型的测试和评估。 BDD100K数据集主要关注场景理解和目标检测任务。它提供了包括车辆、行人、自行车、交通标志等多个类别的标注边界框。此外,数据集还提供了语义分割标注,用于对图像进行像素级别的分类。这使得研究人员可以进行更细粒度的场景理解和分析。 BDD100K数据集的规模和多样性使得它成为自动驾驶研究和算法开发的重要资源。研究人员可以利用该数据集进行目标检测、语义分割、行为预测等任务的训练和评估。一共上传的是7万张图片以及对应的标签(json格式),需要进行格式转换。图片过大传不了
2024-04-10 22:34:39 146.95MB 目标检测 交通物流
1
Mnist手写数据集,包含训练集与测试集,与博客中深度学习专栏可配套学习使用
2024-03-18 15:24:15 13.04MB 数据集 深度学习
1
keras进行验证码识别的训练样本集和测试样本集,每个验证码的名称即为验证码显示的字符
2024-03-15 10:20:36 7.79MB keras 人工智能 深度学习 python
1
yolo格式的widerperson数据集(已划分训练集和测试集)
2024-01-20 13:30:14 676.29MB 行人数据集
1
车牌检测识别训练数据集,蓝牌大概800多张、黄牌大概500多张、新能源绿牌大概200多张,少量白牌、黑牌数据。
2024-01-11 15:31:14 457.63MB 数据集
1
将labelme数据标注格式转换为YoloV8语义分割数据集,并可自动划分训练集和验证集
2023-11-20 16:33:22 1.95MB 数据集 人工智能 深度学习
1