李宏毅2020机器学习深度学习
P1. Machine Learning 2020_ Course Introduction
P2. Rule of ML 2020
P3. Regression - Case Study
P4. Basic Concept
P5. Gradient Descent_1
P6. Gradient Descent_2
P7. Gradient Descent_3
P8. Optimization for Deep Learning 1_2 选学
P9. Optimization for Deep Learning 2_2 选学
P10. Classification_1
P11. Logistic Regression
P12. Brief Introduction of Deep Learning
P13. Backpropagation
P14. Tips for Training DNN
P15. Why Deep-
P16. PyTorch Tutorial
P17. Convolutional Neural Network
P18. Graph Neural Network 1_2 选学
P19. Graph Neural Network 2_2 选学
P20. Recurrent Neural Network Part I
P21. Recurrent Neural Network Part II
P22. Unsupervised Learning - Word Embedding
P23. Transformer
P24. Semi-supervised
P25. ELMO, BERT, GPT
P26. Explainable ML 1_8
P27. Explainable ML 2_8
P28. Explainable ML 3_8
P29. Explainable ML 4_8
P30. Explainable ML 5_8
P31. Explainable ML 6_8
P32. Explainable ML 7_8
P33. Explainable ML 8_8
P34. More about Explainable AI 选学
P35. Attack ML Models 1_8
P36. Attack ML Models 2_8
P37. Attack ML Models 3_8
P38. Attack ML Models 4_8
P39. Attack ML Models 5_8
P40. Attack ML Models 6_8
P41. Attack ML Models 7_8
P42. Attack ML Models 8_8
P43. More about Adversarial Attack 1_2 选学
P44. More about Adversarial Attack 2_2 选学
P45. Network Compression 1_6
P46. Network Compression 2_6
P47. Network Compression 3_6
P48. Network Compression 4_6
P49. Network Compression 5_6
P50. Network Compression 6_6
P51. Network Compression 1_2 - Knowledge Distillation .flv
P52. Network Compression 2_2 - Network Pruning 选学
P53. Conditional Generation by RNN & Attention
P54. Pointer Network
P55. Recursive
P56. Transformer and its variant 选学
P57. Unsupervised Learning - Linear Methods
P58. Unsupervised Learning - Neighbor Embedding
P59. Unsupervised Learning - Auto-encoder
P60. Unsupervised Learning - Deep Generative Model Part.flv
P61. Unsupervised Learning - Deep Generative Model Part.flv
P62. More about Auto-encoder 1_
1