命名实体识别(NER)是自然语言处理(NLP)领域中的关键任务,它涉及识别文本中具有特定意义的实体,如人名、地名、组织名等。标题“中文NER集合”表明这是一个专注于中文环境下的命名实体识别资源集合。描述中提到的“基于马尔科夫逻辑的命名实体识别技术”,暗示了该压缩包可能包含一些利用马尔科夫逻辑网络(Markov Logic Networks, MLNs)的方法来解决中文NER问题的研究。 马尔科夫逻辑网络是一种概率逻辑框架,它结合了马尔科夫随机场和第一阶逻辑的优点,可以用于建立复杂的语义关系模型。在NER中,MLNs可以用来捕捉实体之间的局部和全局上下文信息,以提高识别准确性。例如,一个实体的类型可能与其前后词汇有关,MLNs可以通过定义这些依赖关系的规则来帮助识别。 压缩包中的文件名称提供了更多线索: 1. "NER综述.pdf":这可能是一个全面的NER技术综述,涵盖了各种方法和技术,包括传统的统计模型和深度学习方法。 2. "SSSSSSSSSSSSSSSSSSSSSSSOpen Information Extraction from the Web.pdf":可能探讨的是从互联网上提取开放信息,可能包括NER作为信息提取的一部分。 3. "基于层叠隐马尔可夫模型的中文命名实体识别.pdf":这可能是介绍如何使用层叠隐马尔可夫模型(Cascaded HMMs)进行中文NER的论文,这是一种经典的序列标注模型。 4. "Open Domain Event Extraction from Twitter.pdf":可能关注的是从社交媒体,特别是Twitter中提取开放领域的事件,这通常需要有效的NER来识别事件相关的实体。 5. "一种开放式中文命名实体识别的新方法.pdf":这可能描述了一种新的、创新的中文NER算法,可能采用了不同于传统方法的策略。 6. "[46]ner.pdf":文件名较简单,但可能是一个特定的NER研究或技术的详细说明,编号可能表示参考文献的序号。 这个集合对于学习和研究中文NER非常有价值,它可能包含了理论概述、经典模型的解释、最新方法的介绍以及实际应用案例。通过深入阅读这些资料,我们可以了解命名实体识别的发展历程,比较不同方法的优缺点,以及如何将这些技术应用于实际的数据挖掘和事件抽取任务。此外,对于想要在中文环境下提升信息提取和理解能力的研究者和开发者来说,这些资源无疑是一个宝贵的资料库。
2025-05-19 20:41:54 1.65MB 命名实体识别 数据挖掘 事件抽取
1
第六届“泰迪杯”数据挖掘挑战赛—— B 题:电视产品的营销推荐 资源内包含题目要求及原始数据、本人自己做的解题代码、使用的数据、实验论文 适合备战“泰迪杯”类型的数据挖掘类比赛的本科生进行学习 能学到数据处理的基本方法以及物联网数据分析的相关知识 在第六届“泰迪杯”数据挖掘挑战赛的背景下,B题聚焦于电视产品的营销推荐,为参赛者提供了一个将理论与实践相结合的绝佳机会。本次挑战赛通过提供详细的问题描述、原始数据集以及解题代码,旨在帮助参赛者在实践中学习和掌握数据处理的基本方法。题目不仅涉及传统的数据挖掘技术,还融入了物联网数据分析的新元素,这对于本科生而言是一次宝贵的学习体验。 参赛者在解决电视产品营销推荐问题的过程中,需要深入了解消费者行为模式,并能够运用各种数据挖掘工具和技术来提取有价值的信息。这包括但不限于数据预处理、特征工程、模型构建和结果评估等步骤。通过这种类型的比赛,参赛者可以对数据挖掘的整个流程有一个全面的认识,并能够在实际应用中提出创新的解决方案。 此外,解决此类问题还需要对电视产品市场的营销策略有所了解,例如价格策略、产品定位、广告投放以及消费者偏好等。参赛者需要将数据挖掘与市场分析相结合,从而为电视产品提供个性化推荐。在实际操作中,这可能涉及到构建推荐系统,利用机器学习算法对大量历史数据进行分析,以发现潜在的购买模式和关联规则。 参赛者不仅需要掌握数据挖掘技术,还要有能力撰写实验论文,清晰地表达自己的研究方法、过程和结果。这对于培养参赛者的科研素养和论文写作能力是非常有益的。实验论文应详细记录从数据收集、预处理到模型选择、评估的全过程,并对模型的性能进行分析讨论。 对于备战“泰迪杯”类型的数据挖掘比赛的本科生来说,本次挑战赛是一个难得的实战机会。它不仅能够帮助学生巩固课堂上学到的理论知识,还能让学生在实际操作中遇到问题和挑战,提高解决实际问题的能力。同时,通过比赛,学生可以了解当前数据挖掘领域的发展趋势和前沿技术,为将来的职业生涯打下坚实的基础。 参加本次挑战赛的参赛者,通过研究和分析电视产品的营销数据,将有机会学习到如何运用数据挖掘技术来解决市场营销中的实际问题。他们将学会如何处理和分析大量的数据集,以及如何使用这些数据来预测市场趋势和消费者行为。这不仅是一次学术挑战,更是一次实践应用的演练。通过这样的经验积累,参赛者可以加深对数据挖掘技术及其在物联网数据分析领域应用的理解,进而在未来的学习和工作中发挥这一技能。 第六届“泰迪杯”数据挖掘挑战赛的B题为参赛者提供了一个全面的实践平台,让他们在解决实际问题的同时,能够学习到数据处理和物联网数据分析的相关知识,并提升自身的数据分析能力。这种结合实战的学习方式,对于培养学生的综合应用能力具有重要意义。
2025-05-05 21:44:52 28.65MB 数据挖掘 物联网数据分析
1
数据挖掘实验一-3数据资源3
2025-04-29 15:13:04 49KB 数据挖掘
1
内容概要:本文介绍了基于RIME-DBSCAN的数据聚类可视化方法及其在Matlab中的实现。RIME-DBSCAN是一种改进的密度聚类算法,通过调整密度分布和距离计算,解决了传统DBSCAN算法在高维数据和复杂数据结构中的局限性。该方法通过Matlab平台实现了数据聚类,并结合可视化技术展示了聚类结果,帮助用户直观理解数据的分布和聚类效果。文章详细描述了项目的背景、目标、挑战、创新点及应用领域,并提供了具体的模型架构和代码示例。 适合人群:对数据挖掘、机器学习及聚类算法有一定了解的研究人员和技术人员,尤其是从事数据分析、数据可视化工作的专业人士。 使用场景及目标:①适用于处理高维数据和复杂数据结构的聚类任务;②通过可视化工具展示聚类结果,帮助用户理解数据分布和噪声点位置;③优化数据分析过程,为医疗、金融、电商、社交网络等领域提供数据支持。 其他说明:本文不仅介绍了RIME-DBSCAN算法的理论基础,还提供了具体的Matlab代码实现,便于读者动手实践。同时,文中提到的降维技术和参数选择策略也是项目中的重点和难点,需要读者在实践中不断探索和优化。
2025-04-29 09:45:43 32KB Matlab 数据聚类 可视化 高维数据处理
1
DBSCAN聚类算法是一种基于密度的空间聚类算法,它通过考察数据点周围的邻域来识别高密度区域,将紧密相连的点归为同一类。尽管DBSCAN在处理大型数据库和发现任意形状的簇方面具有优势,但它在效率和准确性方面仍有一些局限性。为了提升DBSCAN算法的性能,RIME技术应运而生,该技术着重于提高数据挖掘过程中的性能与准确度。 RIME技术通过引入一种新的距离度量和优化后的聚类策略,改进了DBSCAN算法的初始核心对象选取过程和簇的扩展过程。在数据点的邻域定义上,RIME可能采用了更有效的计算方式,从而减少了计算复杂度。此外,RIME还可能在确定簇内点和噪声点方面做出了调整,使得算法在不同密度的数据集上都能表现出较好的适应性和稳定性。 在实际应用中,RIME优化的DBSCAN算法能够在大数据时代背景下,为数据挖掘和聚类分析提供更加精确和高效的支持。由于大数据时代数据集的规模通常非常庞大,其中可能包含有噪声的数据点,也可能存在复杂的分布特征。因此,传统的数据挖掘方法在处理这类数据时往往会遇到性能瓶颈。RIME优化的DBSCAN算法可以更有效地处理大规模数据集,同时保持聚类的质量,为相关领域的研究和应用提供了重要的技术支撑。 从给出的文件列表中可以看出,相关的文章和文件主题都围绕着RIME优化的DBSCAN聚类算法以及其在数据挖掘领域的应用。这些文件包含了从引言、深度探索到实际应用分析的多个角度,涉及了文本、图像和超文本格式。通过这些资料的阅读与分析,研究人员能够深入了解RIME技术如何改善DBSCAN聚类算法,并将其应用于现实世界的大数据分析中。 RIME技术的提出和应用,是为了解决DBSCAN聚类算法在处理大数据时所面临的效率和准确性问题。通过改进距离度量和聚类策略,优化后的DBSCAN算法能更好地适应大数据时代的需求,为数据挖掘领域带来更为精准和高效的数据处理能力。相关研究人员可以通过分析给定的文件资料,全面掌握RIME优化DBSCAN聚类算法的理论基础和实践应用,进一步推动该领域的技术进步。
2025-04-28 15:48:01 160KB rpc
1
机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。它专门研究计算机如何模拟或实现人类的学习行为,以获取新的知识或技能,并重新组织已有的知识结构,从而不断改善自身的性能。机器学习是人工智能的核心,也是使计算机具有智能的根本途径。 应用: 机器学习在各个领域都有广泛的应用。在医疗保健领域,它可用于医疗影像识别、疾病预测、个性化治疗等方面。在金融领域,机器学习可用于风控、信用评分、欺诈检测以及股票预测。此外,在零售和电子商务、智能交通、生产制造等领域,机器学习也发挥着重要作用,如商品推荐、需求预测、交通流量预测、质量控制等。 优点: 机器学习模型能够处理大量数据,并在相对短的时间内产生可行且效果良好的结果。 它能够同时处理标称型和数值型数据,并可以处理具有缺失属性的样本。 机器学习算法如决策树,易于理解和解释,可以可视化分析,容易提取出规则。 一些机器学习模型,如随机森林或提升树,可以有效地解决过拟合问题。 缺点: 机器学习模型在处理某些特定问题时可能会出现过拟合或欠拟合的情况,导致预测结果不准确。 对于某些复杂的非线性问题,单一的机器学习算法可能难以有效地进行建模和预测。 机器学习模型的训练通常需要大量的数据和计算资源,这可能会增加实施成本和时间。 总的来说,机器学习虽然具有许多优点和应用领域,但也存在一些挑战和限制。在实际应用中,需要根据具体问题和需求选择合适的机器学习算法和模型,并进行适当的优化和调整。
2025-04-27 18:47:11 218KB 机器学习
1
内容概要:该报告深入剖析了中国居民对于ChatGPT的认知、使用及付费意愿。调研通过广东省内外线上线下的多阶段抽样问卷和专家访谈收集了大量一手数据,涵盖了各类年龄段、收入水平和社会阶层的人群,总样本量为1051份有效问卷。研究报告采用了先进的K-Modes聚类、结构方程模型、BP神经网络、随机森林模型等技术手段,并通过LDA主题建模和StructBert情感分析探讨了居民对ChatGPT的态度及潜在影响因素。结果显示,典型用户为具有大学学历的年轻人、企业和年轻职场人士。ChatGPT的个性化情感交互得到较高评价,但仍存在信息质量波动问题。影响居民付费意愿的主要因素包括方便快捷的付费通道、地域差异和个人收入。此外,居民普遍对ChatGPT持正面看法,并愿意为其付费使用。 适用人群:本研究适用于关注中国AI行业发展及生成式AI技术的学者、从业者和政策制定者。 使用场景及目标:本研究为生成式AI在国内的发展路径提供指导,助力企业及政府理解民众对新技术的接纳程度和潜在市场需求,以调整市场推广策略和技术改进方向。 其他说明:研究表明,用户对新技术的信任度逐渐增强,尤其是在视频制作和内容创建等方面
1
一.选择题 1. 将原始数据进行集成、变换、维度规约、数值规约是数据预处理的任务 A、频繁模式挖掘 B、分类和预测 C、数据预处理 D、数据流挖掘 2. 以下属于关联分析的是 A. CPU性能分析 B. 购物篮分析 C. 自动判断鸢尾花类别 D. 股票趋势建模 3. 下面哪个不属于数据的属性类型 A. 标称 B. 序数 C. 区间 D. 相异 4. 在图集合中发现一组公共子结构,这样的任务称为 频繁子图挖掘 5. 以下关于决策树的说法哪项是错误的: A. 冗余属性不会对决策树的准确率造成不利的影响 B. 子树可能在决策树中重复多次 C. 决策树算法对于噪声的干扰非常敏感(错误的) D. 寻找最佳决策树是NP完全问题 6. 决策树中不包含以下哪种节点 A. 根结点(root node) B. 内部结点(internal node) C. 外部结点(external node) D. 叶结点(leaf node) 7. 关于K均值和DBSCAN的比较,以下说法不正确的是 A. K均值丢弃被它识别为噪声的对象,而DBSCAN一般聚类所有对 ### 数据挖掘期末题知识点解析 #### 一、选择题知识点解析 **1. 数据预处理的任务** - **知识点**: 数据预处理是数据挖掘过程中的重要步骤之一,它涉及多种技术来清洗、转换和规范化原始数据,使其更适合进一步的分析。 - **详细解析**: 数据预处理主要包括以下几个方面: - **数据集成**: 将来自多个源的数据合并到一起,这通常涉及到解决数据冲突的问题。 - **数据变换**: 对数据进行转换,如标准化、归一化等,以便于后续的分析处理。 - **维度规约**: 减少数据集的维度,即减少属性数量,这可以通过选择重要的属性或构建新属性来实现。 - **数值规约**: 减少数据的体积,同时尽可能保持其完整性,例如通过采样、离散化等方式。 **2. 关联分析** - **知识点**: 关联分析是一种发现数据集中变量之间关系的数据挖掘技术。 - **详细解析**: 在给定的选择中,“购物篮分析”是典型的关联分析应用案例。购物篮分析主要用于市场篮子分析,比如找出哪些商品经常一起被购买。 - **CPU性能分析**: 不属于关联分析,它是性能监控的一种。 - **自动判断鸢尾花类别**: 属于分类任务,而不是关联分析。 - **股票趋势建模**: 属于时间序列分析或预测建模,不是关联分析。 **3. 数据的属性类型** - **知识点**: 数据属性类型主要分为标称、序数、区间和比率四种。 - **详细解析**: “相异”不属于数据的属性类型。正确的数据属性类型包括: - **标称**: 无序且不可量化,如颜色、性别等。 - **序数**: 有序但间隔不一定相等,如等级、评分等。 - **区间**: 有序且间隔相等,但没有绝对零点,如温度。 - **比率**: 有序且有绝对零点,如身高、重量等。 **4. 频繁子图挖掘** - **知识点**: 频繁子图挖掘是从图数据集中发现出现频率较高的子图的过程。 - **详细解析**: 频繁子图挖掘是一种特殊的子结构挖掘方法,主要用于生物信息学等领域中的蛋白质结构分析等。 **5. 决策树** - **知识点**: 决策树是一种常用的机器学习算法,用于分类和回归任务。 - **详细解析**: - **冗余属性**: 实际上,冗余属性可能会影响决策树的准确率,尤其是当这些属性被用于分割时。 - **子树重复**: 在决策树中,相同的子树确实可以重复出现。 - **噪声敏感性**: 决策树算法对于噪声数据相对较为鲁棒,并非非常敏感。 - **寻找最佳决策树**: 确实是一个NP完全问题,意味着随着数据规模的增长,找到最优解的时间复杂度会呈指数增长。 **6. 决策树中的节点类型** - **知识点**: 决策树的基本组成部分包括根节点、内部节点和叶节点。 - **详细解析**: “外部节点”不属于决策树中的节点类型。 - **根节点**: 树的顶部节点,代表整个数据集。 - **内部节点**: 表示特征测试。 - **叶节点**: 树的末端节点,表示类别预测结果。 **7. K均值与DBSCAN的比较** - **知识点**: K均值是一种基于原型的聚类算法,而DBSCAN是一种基于密度的聚类算法。 - **详细解析**: - **K均值与DBSCAN的区别**: K均值倾向于将数据点聚类成紧凑的圆形或椭圆形状的簇,而DBSCAN可以处理任意形状的簇。 - **噪声处理**: K均值并不直接处理噪声数据,而是将其分配给最近的簇;DBSCAN则可以明确标识出噪声数据点。 #### 二、填空题知识点解析 **1. 有损数据压缩方法** - **知识点**: 数据压缩技术旨在减少存储和传输数据所需的资源。 - **详细解析**: 两种流行的有损数据压缩方法是小波变换和主成分分析(PCA)。 - **小波变换**: 一种信号处理技术,适用于图像和音频数据压缩。 - **主成分分析**: 一种降维技术,常用于图像压缩等领域。 **2. 决策树的特点** - **知识点**: 决策树具有较好的健壮性,能够处理不完整和含噪声的数据。 - **详细解析**: 决策树算法能够处理不完整的数据,并且对噪声数据有一定的容忍能力。 **3. 数理统计方法** - **知识点**: 参数估计和假设检验是统计学中的基本方法。 - **详细解析**: 参数估计用于根据样本数据推断总体参数,而假设检验则用于验证某个假设是否成立。 **4. 模糊数学的起源** - **知识点**: 模糊数学是一门研究模糊概念和模糊逻辑的学科。 - **详细解析**: 模糊数学由扎德(Zadeh)等人于1965年提出,主要应用于控制论、人工智能等领域。 **5. 协同过滤算法** - **知识点**: 协同过滤是推荐系统中最常用的技术之一。 - **详细解析**: 协同过滤分为基于记忆的协同过滤和基于模型的协同过滤。 - **基于记忆的协同过滤**: 依赖用户历史行为数据,如评分记录等。 - **基于模型的协同过滤**: 使用机器学习模型来预测用户的喜好。 **6. 维归约技术** - **知识点**: 维归约是减少数据集维度的一种方法。 - **详细解析**: 主成分分析(PCA)和奇异值分解(SVD)都是常用的线性代数技术,用于数据降维。 **7. 分类模型误差** - **知识点**: 分类模型的误差可以分为训练误差和泛化误差。 - **详细解析**: 训练误差指的是模型在训练数据上的误差,而泛化误差则是模型在未见过的新数据上的表现。 **8. 先验原理的应用** - **知识点**: 先验原理是频繁项集挖掘中的一个重要概念。 - **详细解析**: 先验原理指出,如果一个项集是频繁的,则它的所有子集也是频繁的。这一原理有助于减少频繁项集产生时需要考虑的候选集数量。 **9. 预测建模任务** - **知识点**: 数据挖掘中的预测建模任务主要包括分类和回归。 - **详细解析**: 分类任务是预测数据点属于哪个类别,而回归任务则是预测连续值的结果。 **10. 聚类分析定义** - **知识点**: 聚类分析是一种探索性数据分析技术。 - **详细解析**: 聚类分析旨在将相似的数据点分组在一起形成簇或类,这些簇内的数据点比簇间的更加相似。 #### 三、简答题知识点解析 **1. 属性子集选择** - **知识点**: 属性子集选择是在数据预处理阶段通过删除不相关或冗余的属性来减少数据集的维度。 - **详细解析**: - **目的**: 提高模型的解释性和效率,减少计算成本。 - **方法**: 包括过滤(Filter)、包裹(Wrapping)和嵌入(Embedding)等方法。 - **过滤**: 评估属性的重要性而不考虑特定的机器学习算法。 - **包裹**: 通过特定的学习算法评估属性子集的好坏。 - **嵌入**: 在构建预测模型的过程中直接评估特征的重要性。 以上知识点涵盖了数据挖掘领域中的核心概念和技术,有助于理解数据挖掘的基本原理和实践应用。
2025-04-20 13:11:20 8.67MB 数据挖掘
1
【项目资源】: 包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。 包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。
2025-04-19 15:41:35 8.92MB 毕业设计 课程设计 项目开发 资源资料
1
python数据分析 上市公司股票 公司 流动比率 速动比率 资产负债率 应收账款周转率 流动资产周转率 总资产周转率 资产净利率 销售毛利率 期间费用率 主营收入增长率 总资产增长率 净资产增长率 分析 绘制画统计图 折线图条形图柱状图散点图 jupyter notebook numpy pandas matplotlib 数据分析 数据挖掘
2025-04-14 21:28:08 89KB 数据分析 数据挖掘
1