### 耦合模理论推导 #### 一、耦合模理论概述 耦合模理论(Coupled-Mode Theory, CMT)是一种用于研究两个或多个电磁波模式间耦合特性的理论方法。该理论在无线能量传输、微波射频等领域的应用尤为广泛。CMT能够有效地简化多线圈耦合电路的计算复杂度,特别是在非接触电能传输(Contactless Power Transfer, CPT)系统的设计与分析中扮演着重要的角色。 #### 二、耦合模理论在能量传输中的应用 ##### 2.1 单个负载的电路分析 **电路分析** 考虑一个基本的磁共振系统,其中包含逆变器和整流器部分。在该系统中,逆变器产生的交流电源\( U \)经过耦合线圈传递给负载\( R_L \)。这里,耦合系数\( K = \frac{M}{\sqrt{L_1 L_2}} \),其中\( M \)代表两个线圈\( L_1 \)和\( L_2 \)之间的互感。根据电路原理,可以得到以下方程: 1. 原边线圈电流方程:\[ U = (R_1 + j\omega L_1)I_1 + j\omega MI_2 \] 2. 副边线圈电流方程:\[ 0 = (R_2 + j\omega L_2)I_2 - j\omega MI_1 \] 3. 负载功率方程:\[ P_L = I_2^2R_L \] 在谐振状态下,即\( \omega = \frac{1}{\sqrt{L_1C_1}} = \frac{1}{\sqrt{L_2C_2}} \),可以进一步简化上述方程组,并得到能量传输效率的计算公式。 **CMT分析** CMT分析侧重于稳态特性,假设主线圈和次线圈的幅值在正弦激励下为常数。利用CMT,我们可以得到原线圈和次线圈的能量变化方程: 1. 原线圈能量变化方程:\[ \dot{a}_1 = -\frac{1}{2}R_1a_1 - j\omega M a_2 + S \] 2. 次线圈能量变化方程:\[ \dot{a}_2 = -\frac{1}{2}R_2a_2 - j\omega M a_1 \] 其中,\( a_1(t) \)和\( a_2(t) \)分别代表原线圈和次线圈的瞬时能量,\( R_1 \)和\( R_2 \)为线圈的损耗,\( K_{12} \)为两个线圈之间的耦合率,\( S \)为外部激励(通常可以忽略不计)。通过这些方程,我们可以推导出原线圈和副线圈之间的能量传输效率,并验证它与电路分析方法得到的结果一致。 ##### 2.2 两个负载电路的传输效率分析 当存在两个负载时,电路模型变得更为复杂。此时,需要同时考虑两个负载线圈\( L_2 \)和\( L_3 \)与主线圈\( L_1 \)之间的互感\( M_2 \)和\( M_3 \)。同样地,可以列出相应的电流方程,并求解谐振条件下的传输效率。 1. 原边线圈电流方程:\[ U = (R_1 + j\omega L_1)I_1 + j\omega M_2 I_2 + j\omega M_3 I_3 \] 2. 第二个负载线圈电流方程:\[ 0 = (R_2 + j\omega L_2)I_2 - j\omega M_2 I_1 \] 3. 第三个负载线圈电流方程:\[ 0 = (R_3 + j\omega L_3)I_3 - j\omega M_3 I_1 \] 4. 负载功率方程:\[ P_{L2} = I_2^2 R_{L2},\quad P_{L3} = I_3^2 R_{L3} \] 通过这些方程,可以进一步推导出多负载情况下的能量传输效率公式,并将其与单负载情况下的公式进行比较,从而验证耦合模理论的有效性和一致性。 #### 三、结论 耦合模理论作为一种有效的工具,不仅能够简化复杂电路模型的分析过程,还能准确地预测能量传输系统的性能。通过上述分析可以看出,无论是单个负载还是多个负载的情况,耦合模理论都能够提供一种统一的方法来求解能量传输效率。这对于设计高效可靠的无线能量传输系统具有重要意义。在未来的研究中,耦合模理论有望在更多领域得到更广泛的应用和发展。
2024-10-20 23:05:52 430KB 能量传输
1
整理了: 一阶RC低通滤波器数学模型推导及算法实现 一阶RC高通滤波器数学模型推导及算法实现 二阶RC低通滤波器数学模型推导 二阶RC高通滤波器数学模型推导 陷波滤波器数学公式推导及算法实现 标准卡尔曼滤波器数学公式推导及算法实现 文中对基础知识进行了注释,适合对遗忘的知识的拾起,文中算法的实现都使用了C++语言,适合移植到嵌入式平台,代码也进行了比较清晰的注释,适合理解。 文中所有公式都是up主手动敲出来的。 up主能力有限,难免有错误,欢迎网友指出和交流。 陷波滤波器代码部分不完整,完整代码放置百度云盘,自取: 链接:https://pan.baidu.com/s/1r6mTPmbRJyTKgvBMdlNdIw 提取码:rntb 本文主要涵盖了四种滤波器的公式推导及算法实现,分别是:一阶RC低通滤波器、一阶RC高通滤波器、二阶RC低通滤波器、二阶RC高通滤波器,以及陷波滤波器和标准卡尔曼滤波器。这些滤波器广泛应用于信号处理和数据分析领域,尤其是在嵌入式系统中。 1. 一阶RC低通滤波器: - 数学模型推导:通过拉普拉斯变换将时域转换为频域,得到传递函数。 - 算法推导:采用一阶后向差分进行离散化,通过采样频率和截止频率计算系数。 - 代码实现:提供了一段C++代码实现了一阶RC低通滤波器。 - 算法验证:通过验证代码来确保滤波器功能的正确性。 2. 一阶RC高通滤波器: - 数学模型推导:与低通滤波器类似,但传递函数有所不同,允许高频信号通过。 - 算法推导和实现:同样使用离散化方法,计算系数并实现滤波算法。 - 算法验证:验证滤波器效果。 3. 二阶RC低通/高通滤波器: - 数学模型推导:扩展一阶模型,增加一个电容或电阻,得到更复杂的传递函数。 - 算法推导推导离散化形式,计算新的系数。 - 实现未在文本中详述,可能需要参考作者提供的完整代码。 4. 陷波滤波器: - 传递函数推导:设计一个特定的滤波器,以衰减特定频率范围内的信号。 - 算法推导:计算系数并实现陷波滤波算法。 - 代码实现:不完整,完整代码需从链接下载。 5. 标准卡尔曼滤波器: - 前置知识:介绍递归处理、数据融合、相关数学基础和状态空间方程。 - 算法推导:包括卡尔曼增益的计算、先验和后验估计协方差的求解。 - 算法实现:分别展示了适用于一维、二维或多维的卡尔曼滤波器的C++实现。 卡尔曼滤波是一种高级的滤波技术,它结合了动态系统的状态估计和测量数据,通过递归算法处理数据,实现对系统状态的最优估计。滤波器的选择取决于应用场景,低通滤波器用于抑制噪声,陷波滤波器用于去除特定频率干扰,而卡尔曼滤波器则适用于复杂环境下的动态数据处理。
2024-09-12 11:05:55 4.7MB
1
**FOC控制技术详解** **1. FOC(Field-Oriented Control)的本质与核心思想** FOC(Field-Oriented Control)是一种先进的电机控制策略,其核心思想是通过实时控制电机的定子磁场,使其始终与转子磁链保持90度的相位差,以实现最佳的转矩输出。这被称为超前角控制。电机的电角度用于指示转子的位置,以便在固定坐标系和旋转坐标系之间转换磁场,进而生成精确的PWM信号来控制电机。电角度的定义可以灵活,如轴与轴的夹角,主要目的是简化Park和反Park变换的计算。 **2. 超前角控制的原理** 超前角控制的关键在于使电机的磁通与转矩方向垂直,以获得最大的转矩。当转子磁场相对于定子磁场滞后90度时,电机的扭矩最大。因此,通过实时调整定子电流,使它超前于转子磁链90度,可以达到最优的扭矩性能。 **3. Clark变换** Clark变换是将三相交流电流转换为两相直轴(d轴)和交轴(q轴)的直流分量的过程,目的是将复杂的三相系统解耦为易于控制的两相系统。在Clark变换中,通过一定的系数(等幅值变换或恒功率变换)将三相电流转换为两相电流,使得电机的动态特性更易于分析和控制。 **3.1 数学推导** Clark变换的公式如下: \[ I_d = k(I_a - \frac{1}{\sqrt{3}}(I_b + I_c)) \] \[ I_q = k(\frac{1}{\sqrt{3}}(I_a + I_b) - I_c) \] 其中,\(k\) 是变换系数,等幅值变换时 \(k = \frac{1}{\sqrt{3}}\),而恒功率变换时 \(k = \frac{2}{\sqrt{3}}\)。 **4. Park变换与逆变换** Park变换是将两相直轴和交轴电流进一步转换为旋转变压器坐标系(d轴和q轴),以便进行磁场定向。逆Park变换则将旋转变压器坐标系的电流再转换回直轴和交轴电流。这两个变换在数学上涉及到正弦和余弦函数,对于实时控制至关重要。 **5. SVPWM(Space Vector Pulse Width Modulation)** SVPWM是一种高效的PWM调制技术,通过优化电压矢量的分配,实现接近理想正弦波的电机电压。SVPWM涉及到扇区判断、非零矢量和零矢量的作用时间计算、过调制处理以及扇区矢量切换点的确定。这一过程确保了电机高效、低谐波的运行。 **6. PID控制** PID(比例-积分-微分)控制器是自动控制领域常见的反馈控制策略。离散化处理是将连续时间的PID转换为适合数字处理器的形式。PID控制算法包括位置式和增量式两种,各有优缺点,适用于不同的控制场景。积分抗饱和是解决积分环节可能导致的饱和问题,通过各种方法如限幅、积分分离等避免控制器性能恶化。 **7. 磁链圆限制** 磁链圆限制是限制电机磁链的模长,以防止磁饱和现象。通过对MAX_MODULE和START_INDEX的设定,确保电机在安全的工作范围内运行,同时保持良好的控制性能。 以上知识点涵盖了FOC控制的基础理论和实际应用,包括数学推导、算法实现以及相关的控制策略。通过深入理解并实践这些内容,可以有效地设计和优化电机控制系统。
2024-09-12 11:01:38 7.34MB simulink
1
BP神经网络(公式推导+举例应用)
2024-06-15 14:52:53 340KB 神经网络
1
史上最详细的四元数、旋转矩阵、旋转矢量的推导,保姆级教学!!!特别特别详细且通俗易懂,图文结合,生动形象,一文足以熟练掌握四元数相关知识!!!!!
2024-05-23 16:36:43 436KB 旋转矢量
1
P.S. 符号 ⋀为向量到反对称矩阵的转换符,将向量外积的计算转换为矩阵和向量相乘的形式如图,旋转轴方向向量为单位向量,‖‖ = 1,且:= Ⅱ + ⊥ (分解
2024-04-19 18:27:30 150KB
1
氢被视为从基于矿物燃料的经济向可再生,可持续经济过渡的关键因素。 氢气可直接用作能量载体或用作将CO2还原为合成烃的原料。 氢可通过电解将水分解成氧气和氢气来产生。 本文概述了三种主要的电解技术:酸性(PEM),碱性(AEL)和固体氧化物电解(SOEC)。 提供了现有电解槽和商业供应商的更新列表。 最有趣的是,如果有的话,还会给出商用设备的具体价格。 尽管在过去的几十年中PEM技术取得了长足的发展,但最大,最高效的电解槽仍然是碱性的。 因此,期望该技术在向氢社会的过渡中起关键作用。 提供了碱性电解槽中各组分的详细说明和该过程的分析模型。 分析模型允许调查不同操作参数对效率的影响。 具体而言,分析了温度对电解质电导率的影响,进而对效率的影响。 发现在65°C-220°C的碱性电解槽的典型工作温度范围内,效率变化高达3.5个百分点,分别在65°C和220°C时从80%增至83.5%。 。
2024-03-18 12:58:31 1.92MB 分析建模 技术概述
1
buck-boost电路公式推导
2024-01-15 17:21:34 319KB
1
参考《图论算法及其MATLAB实现 王海英 北航》
2023-10-12 21:33:02 20KB matlab 算法 图论 开发语言
1
LCL滤波器传递函数(阻抗法)推导-Bing
2023-08-31 10:09:41 171KB LCL滤波器
1