基于springboot的外卖系统的数据库结构和数据
2024-12-28 16:14:34 46KB sql 毕业设计 Java
1
主要内容:本文详细介绍了在MATLAB环境中通过鲸鱼优化算法(WOA)来优化卷积长短期记忆网络(CNN-LSTM)以实现高效的数据分类与预测的方法。项目不仅提供了理论概述和设计思路,还包含了完整代码及合成数据样本。涵盖了从基础知识到模型优化的设计流程。 适合人群:对于深度学习及机器学习感兴趣的研究员和工程师。 使用场景及目标:适用于各种类型数据的分类及预处理,在需要进行复杂数据集处理的情况下能提供更好的预测效果。 其他说明:文中给出了详细的设计指导和具体的执行脚本,方便读者理解和实践。同时,项目允许在特定应用场景下定制和调参,增强了方法的实用性。
2024-11-18 17:13:49 37KB 鲸鱼算法 MATLAB环境
1
内容概要:该文档介绍了使用YOLOv11与OpenPose相结合来开发的一个摔倒姿态识别系统的设计与实现细节。系统主要特征体现在高速精准检测物体及人体姿态的能力上,同时还通过数据增强等方式提升了模型性能,在软件界面上也实现了易用性和人性化设置。 适用人群:面向计算机视觉领域的研究和开发者以及对图像分析有兴趣的专业技术人员。 使用场景及目标:适用于老年人照护中心、医院等公共场所的安全监视系统,能够在人发生摔倒的情况下快速作出反应。 其他说明:提出了未来的改进方向如集成智能警报和实时摄像头检测等功能模块以拓展系统实用价值。
1
内容概要:本文介绍了基于YOLOv11的人员溺水检测告警监控系统,详细描述了项目的实施背景、特点及相关参考资料等内容。具体实现上,通过使用YOLOv11模型对从摄像头获得的视频流实现实时的人类溺水监测,同时提供有友好的GUI用于交互操作,在出现异常情况后能够及时做出反应并通过音频或短信的方式发出警告提示。 适合人群:专注于水域安全的专业人员和技术开发者。 使用场景及目标:适用于需要实时监视溺水事故的各种场景,包括游泳池、湖滨及海岸线等等。 阅读建议:为了更好地掌握该技术的设计思路及其应用场景的具体细节,鼓励深入探讨与实践相关内容。
2024-10-31 00:55:35 48KB 深度学习 目标检测
1
在电子设计领域,尤其是嵌入式系统开发中,通信接口的转换扮演着至关重要的角色。本文将详细讨论标题和描述中提及的几个关键组件:CP2105、CP2103、ADM2582,以及USB转UART、UART转隔离RS422的相关知识点,并提供Cadence原理图封装库和数据手册的相关信息。 让我们来看看CP2105和CP2103,这两款芯片是Silicon Labs(原名Cygnal)生产的一种高性能USB到UART桥接器。它们主要用于实现PC或其他USB设备与串行接口的通信。CP2105支持双UART通道,能够同时连接两个独立的UART设备,而CP2103则是一个单通道的版本。这些芯片内置了USB协议处理功能,可以简化USB到串行的转换,同时提供全速USB 1.1接口,数据传输速率可达12Mbps。 接下来是ADM2582,这是一款由Analog Devices生产的隔离式RS-422/RS-485收发器。RS-422和RS-485是工业标准的多点通信协议,适用于长距离、高噪声环境的数据传输。ADM2582提供了电气隔离,以保护系统免受可能的电压浪涌和地环路干扰,确保数据传输的可靠性和系统的稳定性。它支持最高20Mbps的数据速率,可以驱动多达32个接收器,是UART到隔离RS-422转换的理想选择。 在嵌入式硬件设计中,USB转UART模块常用于通过USB接口在线烧写STM32这样的微控制器。STM32是基于ARM Cortex-M内核的微控制器系列,广泛应用于各种嵌入式系统。通过USB转串口工具,开发者可以方便地使用如STLink、JLink等调试器进行程序下载和调试,而无需额外的物理接口。 数据手册和原理图封装库是设计过程中不可或缺的资源。数据手册详细描述了每个芯片的功能、引脚定义、电气特性、操作条件和应用电路等,为设计者提供了必要的设计指导。Cadence是业界广泛使用的电子设计自动化软件,其原理图封装库包含了各种元器件的图形表示,使得在原理图设计阶段可以直观地布局和连接电路。 总结来说,USB转UART芯片如CP2105和CP2103,以及隔离RS-422收发器ADM2582,在嵌入式硬件设计中起到桥梁作用,使PC能与串行设备如STM32进行有效通信。理解这些组件的工作原理和正确使用方法,对嵌入式系统的开发和调试至关重要。数据手册和Cadence封装库则是确保设计准确无误的关键参考资料。在实际项目中,结合这些知识,可以构建出稳定可靠的USB转串口和隔离RS-422通信解决方案。
2024-10-30 11:41:34 4.29MB stm32 arm 嵌入式硬件
1
水色图像水质评价采用专门针对推向处理的卷积神经网络来进行分类处理
2024-10-24 21:43:25 155.85MB 机器学习 卷积神经网络
1
主要内容:这篇文档展示了怎样在MATLAB环境中利用双向门控循环单元(BiGRU)建立模型,进行时间序列的数据预测。详细地介绍了创建时间系列样本集,BiGRU模型配置、构造和参数设定的过程,同时演示了使用提供的数据执行预测并呈现实际和预测值对比的方法. 适合人群:适合熟悉基本MATLAB用法,有一定机器学习基础知识的专业人士。 使用场景及目标:对于想要在时间和经济序列分析上得到更好的预测结果的技术研究者和从业者来说是有意义的学习与实验工具。 其他说明:本文提供了一份包含详尽的注释说明以及所需的数据的实用BiGRU时间序列预测脚本,便于快速启动项目的实操者学习。
1
【QSM技术详解】 定量磁化图(Quantitative Susceptibility Mapping,QSM)是一种用于磁共振成像(Magnetic Resonance Imaging, MRI)的高级分析技术,它能够提供组织磁性特性(如铁含量和组织结构)的定量信息。在MRI中,QSM通过揭示磁场扰动来揭示生物组织的内在磁性特性,对于神经科学研究、疾病诊断和治疗监控具有重要意义。 【qsm-tools软件包】 "qsm-tools"是一个专门为QSM处理设计的开源软件包,它支持Python和MATLAB两种编程语言。这个工具集提供了完整的QSM处理流程,包括数据预处理、反演算法应用、去噪和后处理等步骤,使得研究人员和临床医生能够轻松获取和分析QSM图像。 1. **Python模块**:Python是数据科学和计算领域广泛使用的语言,qsm-tools的Python实现使用户能够利用其强大的生态系统进行数据管理和分析。该模块通常包含数据读取、预处理函数(如头部校正、去除磁场背景)、QSM重建算法(如基于迭代的方法)以及结果可视化功能。 2. **MATLAB接口**:MATLAB以其丰富的图像处理和数学运算库而知名,qsm-tools的MATLAB版本提供了与Python类似的功能,适合那些熟悉MATLAB环境的用户。其可能包括专门优化的算法实现,以提高计算效率。 【核心QSM处理步骤】 1. **数据采集**:在MRI扫描中,获取含有频率偏移信息的k空间数据,这些数据反映了磁场的不均匀性。 2. **预处理**:包括头部运动校正、磁场背景的去除(如使用水或空气信号作为参考)以及信号标准化等步骤。 3. **磁场倒影(Field-to-Image Mapping, FIM)**:将k空间数据转换为体素级的磁感应强度图像。 4. **去噪**:应用各种去噪算法,如基于稀疏表示的去噪,以提高图像质量。 5. **反演算法**:通过求解泊松方程,从磁感应强度图像恢复组织的磁化率分布,如迭代最小二乘法或基于物理模型的方法。 6. **后处理**:包括去除脑外结构、平滑滤波、标准化和可视化等,以得到最终的QSM图像。 【qsm-tools-master内容】 在"qsm-tools-master"压缩包中,包含了qsm-tools的源代码、示例数据、文档和安装指南等。用户可以通过阅读文档了解如何配置和运行软件,使用示例数据进行测试,从而快速上手。此外,源代码部分展示了具体的算法实现,对理解QSM处理过程和技术细节非常有帮助。 qsm-tools为研究者和医疗专业人员提供了一套全面的QSM解决方案,使得他们能够深入探索组织的磁性特性,推动MRI在生物医学领域的应用。无论是Python爱好者还是MATLAB用户,都能在这个开源项目中找到适合自己处理QSM数据的工具。
2024-09-02 17:45:46 3KB python matlab
1
MCMC马尔可夫链蒙特卡洛模型(Python完整源码和数据) MCMC马尔可夫链蒙特卡洛模型(Python完整源码和数据) MCMC马尔可夫链蒙特卡洛模型(Python完整源码和数据) Python实现MCMC马尔可夫链蒙特卡洛模型(Markov Chain Monte Carlo)
2024-07-02 21:44:13 1.31MB python MCMC
对于众包任务根据已执行的任务信息,进行重新定价优化。首先用线性回归分析,发现线性回归解决不了该问题,转而使用神经网络进行回归分析,回归分析根据模型去修正原来些未完成的任务的单价。最后使用已完成的任务和支持向量机生成模型,去预测那些原本未完成并修正单价后,他们中可能完成的任务数。结果发现,经过优化定价后,未完成的任务可能完成数会增加53个,而未完成任务的总体金额优化前后却省了42
2024-06-23 17:58:21 1.04MB 神经网络 机器学习
1