串口协议,也称为UART(通用异步收发传输器)协议,是计算机通信中常见的一种接口协议,尤其在嵌入式系统和工业自动化领域应用广泛。它允许两个设备通过串行线路进行全双工通信。在实际产品中,串口协议通常用于设备配置、数据传输、状态报告等场景。 在项目中,实现串口通讯协议的关键在于定义清晰的数据帧格式和设计高效可靠的打包及解析函数。`protocol.c`和`protocol.h`这两个文件很可能是用于实现这一目的的核心代码。`protocol.c`可能包含了打包和解析函数的具体实现,而`protocol.h`则可能定义了相关的数据结构、常量和函数原型,方便其他模块调用。 1. 数据帧格式:一个标准的数据帧通常包括起始位、数据位、校验位和停止位。起始位通常为低电平,表示数据传输的开始;数据位根据需要可以是5、7或8位,实际传输的信息在这部分;校验位用于检测数据传输过程中的错误,可以是奇偶校验、CRC校验等;停止位通常为高电平,表示数据传输的结束。在`protocol.c`中,打包函数可能负责生成符合这种格式的数据帧,而解析函数则负责识别并提取出有效信息。 2. 打包函数:打包函数的主要任务是将应用程序的逻辑数据转换成符合串口协议的数据帧。这可能涉及到编码逻辑数据、计算校验值、添加起始位和停止位等步骤。在实现时,需要考虑到数据的大小端问题,确保发送方和接收方的数据表示一致。 3. 解析函数:解析函数的作用是接收串口接收到的原始比特流,解码出其中的逻辑数据。它需要识别数据帧的边界,检查校验位以确认数据的完整性,并将正确无误的数据传递给上层应用。在处理过程中,需要处理各种异常情况,如丢失数据帧、错误的校验值等。 4. 错误处理与重传机制:为了保证通信的可靠性,串口协议通常会包含错误检测和重传机制。如果接收方发现数据帧有误,可以向发送方请求重新发送。这可能需要一个应答机制,例如使用ACK(确认)和NAK(否定)信号来反馈接收状态。 5. 波特率和握手协议:串口通信还需要设置波特率,即数据传输的速度。此外,还可以选择使用握手协议,如RTS/CTS(请求发送/清除发送)或XON/XOFF(流量控制),以协调发送和接收方的数据传输速率,防止缓冲区溢出。 6. 实际应用中的注意事项:在实际产品中,串口通讯可能会面临电磁干扰、硬件故障等问题。因此,需要对通信链路进行适当的保护,如使用屏蔽线、设置合理的通信距离等。同时,还需要考虑串口的兼容性,确保不同设备之间能顺利通信。 `protocol.c`和`protocol.h`所涉及的串口协议实现涵盖了数据帧结构的设计、打包与解析函数的编写、错误检测与处理、波特率设置、握手协议等多个方面。这些内容对于确保串口通信的稳定性和可靠性至关重要。
2026-01-09 14:50:16 2KB 串口协议 串口通讯协议
1
《串口共享 Serial to Ethernet Connector 全面解析》 在当今的网络环境中,串口设备的使用仍然广泛,尤其在工业自动化、数据采集等领域。然而,由于串口通信的局限性,如距离限制和不易远程访问,使得串口设备的管理和维护变得复杂。为了解决这一问题,"Serial to Ethernet Connector"应运而生,它是一款强大的串口共享软件,能将串口转换为网络接口,实现串口设备的远程访问和控制。 让我们深入了解"Serial to Ethernet Connector"的核心功能。该软件的主要作用是创建虚拟串口,这些虚拟串口能够通过网络连接到任何地方的TCP/IP端口。这样一来,即使物理串口设备位于远程位置,用户也能像操作本地串口一样进行操作。这极大地扩展了串口设备的使用范围,使得远程监控、数据传输和设备调试变得更加便捷。 "Serial to Ethernet Connector"支持多种通信协议,包括RS-232、RS-485和RS-422,这些都是工业领域常见的串行通信标准。通过软件,用户可以设置波特率、数据位、停止位、校验位等参数,以匹配各种不同类型的串口设备。同时,软件还提供了数据流控制选项,如xon/xoff、RTS/CTS和DTR/DSR,以确保数据传输的准确性和可靠性。 在安全性方面,"Serial to Ethernet Connector"也有所考虑。它支持加密通信,如SSL/TLS,保护了串口数据在传输过程中的安全性。此外,用户还可以设置访问控制,限制只有授权的IP地址或设备才能连接到虚拟串口,进一步增强了系统的安全性。 对于多用户协作的场景,"Serial to Ethernet Connector"提供了一个独特的功能——多个网络连接到同一虚拟串口。这意味着多个设备或应用可以同时访问并控制同一个串口设备,这对于设备测试、多用户监控系统以及分布式系统集成来说非常实用。 安装和使用"Serial to Ethernet Connector"相当直观。在提供的压缩包文件"Serial to Ethernet Connector 5.0.7.376"中,包含了软件的最新版本。用户只需按照安装向导的指引进行操作,然后在软件界面配置所需的串口参数和网络设置,即可轻松完成部署。软件界面简洁明了,即便是对技术不太熟悉的用户也能快速上手。 "Serial to Ethernet Connector"是一个高效、灵活且安全的解决方案,它打破了传统串口通信的物理限制,使得串口设备可以轻松融入现代网络环境。无论是在企业内部的局域网还是跨越互联网的广域网,它都能提供稳定可靠的串口共享服务,极大地提高了串口设备的使用效率和管理便利性。
2026-01-09 12:43:12 8.09MB 串口共享 Serial Ethernet Connector
1
1.自动枚举已有串口,不用再去设备管理器中去找了。 2.在16进制模式下自动CRC 提示异或与加法模式。默认输入框中所有数据参加CRC计算,也可以只计算你选中的部分参加计算。 3.回车键默认发送,模拟超级终端的操作。 4.可以将接收的数据保存为TXT文,也可以发送TXT文件,并且自动记录最近发送的10个文件。 5.到目前为止用过的最好串口工具。 6.快捷键CTRL+H可以在16进制与字符模式快速切换。 7.支持英语、简体、繁体,会根据你当前操作系统语言自动切换。 8.如果使用过程中发现BUG 或者有什么建议,可以发送邮件至enble_oy@126.com。
2026-01-08 20:56:49 784KB 串口 串口工具
1
条形码检测 avt相机 halcon联合C++联合C#读条码源码 AVT的CCD相机飞拿采集图片,流水线上面运行,传感器感应条形码,相机采图,识别二维码,当读取二维码不联系后,开始通过串口控制输出点停机并且报警 在现代工业生产中,条形码检测是提高生产效率和准确性的重要技术手段。本文将详细介绍条形码检测技术的应用、关键组件以及技术开发实例。 条形码检测技术的应用广泛,尤其在流水线作业中显得至关重要。条形码作为一种便于机器阅读的信息符号,通过特定的编码规则来表示数据。在流水线上,条形码可以被用来跟踪产品的生产过程、库存管理、销售记录等多个环节。它能够减少人为错误,加快物流过程,提升整个生产系统的效率。 条形码检测的关键组件之一是图像采集设备,如AVT的CCD相机。这种相机具备高分辨率和高灵敏度,能够在高速运动的流水线上快速准确地采集图像。条形码检测系统中,相机通常配合传感器一起工作。当流水线上的产品经过传感器时,传感器会感应到条形码的存在并触发相机拍摄条形码图片。 拍摄到的图片需要通过图像处理软件进行识别和解码,这一环节通常会用到Halcon这一专业机器视觉软件。Halcon具有强大的图像处理和分析功能,能够从复杂的图像背景中分离出条形码区域,并准确地识别出其中的编码信息。此外,Halcon还支持与多种编程语言的接口,包括C++和C#,使得开发者可以轻松地将条形码识别功能集成到现有的生产管理系统中。 在条形码识别的过程中,如果系统无法正确读取二维码信息,会导致一系列的问题,例如产品流向错误、生产数据记录不准确等。为了避免这类问题,条形码检测系统通常会配备有报警和自动停止功能。当出现识别错误时,系统会通过串口控制输出信号,使流水线上的传送带停止运行,并发出报警信号,通知操作人员及时处理问题。 本文档还包含了关于条形码检测技术的介绍性文档和案例分析。这些资料能够帮助技术人员和开发者更好地理解和应用条形码检测技术,通过实际案例了解其在生产线上的应用,并掌握如何通过技术手段解决可能出现的问题。 条形码检测技术在现代化流水线生产中扮演着至关重要的角色。从关键组件的选择到图像处理软件的应用,再到实际操作中的问题解决方案,本文均作了详细的阐述。对于希望提升生产效率和准确性的企业来说,条形码检测技术无疑是提高竞争力的有效工具。
2026-01-08 11:04:33 244KB scss
1
中兴微随身WiFi的USB串口驱动
2026-01-06 23:23:00 814KB 随身WIFI USB 串口
1
标题 "FPGA学习之-串口发送图片+ram存储+tft屏幕显示" 涉及的是在FPGA(Field-Programmable Gate Array)设计中实现图像数据的串行传输、RAM存储以及在TFT(Thin Film Transistor)屏幕上显示的技术。这个项目可能是为了帮助初学者了解如何利用FPGA进行多媒体应用的开发。 FPGA是一种可编程的集成电路,能够根据设计者的需要配置逻辑功能。在本项目中,FPGA被用作核心处理器,负责接收图像数据、存储数据并驱动TFT屏幕显示图像。 1. **串口发送图片**:串口通信是计算机通信的一种常见方式,通常使用UART(Universal Asynchronous Receiver/Transmitter)接口。在这个项目中,外部设备(如PC)通过UART协议将图片数据以串行的方式发送到FPGA。UART协议需要设置波特率、奇偶校验、停止位等参数,确保数据的正确传输。 2. **RAM存储**:在FPGA内部,RAM(Random Access Memory)用于临时存储接收到的图像数据。因为图片通常包含大量的像素信息,需要较大的存储空间。FPGA中的分布式RAM或块RAM可以用来实现这一功能,存储接收到的串行数据,并按需读取供屏幕显示。 3. **TFT屏幕显示**:TFT屏幕是一种有源矩阵液晶显示器,具有高对比度和色彩鲜艳的特点。在FPGA设计中,需要编写相应的驱动程序来控制TFT屏幕的时序,包括初始化、数据写入、刷新率控制等。这些控制信号由FPGA生成并发送到屏幕的控制接口,使得图像数据能在屏幕上正确显示。 4. **工程源码**:提供的"image_uart_rx"可能是一个工程文件,包含了实现上述功能的VHDL或Verilog代码。用户可以下载此文件,通过FPGA开发软件(如Xilinx ISE、Altera Quartus II或Vivado)进行编译和下载,然后在实际硬件上运行,观察图像显示效果。 5. **FPGA开发**:学习这个项目可以帮助开发者了解数字系统设计的基本概念,如串行通信协议、内存管理以及硬件描述语言编程。同时,它也涉及到了实时数据处理和接口控制,这些都是FPGA在现代电子系统中的重要应用。 6. **范文/模板/素材**:这表明该资源可能作为一个学习示例或者参考模板,供开发者在自己的项目中借鉴或修改,以实现类似的功能。 这个FPGA项目涵盖了串行通信、内存管理和图形显示等多个关键领域,对于想要深入理解和实践FPGA应用的工程师来说,是一个非常有价值的参考资料。通过分析和理解提供的源码,开发者可以提升其在FPGA设计方面的技能。
2026-01-06 16:43:21 51.38MB fpga开发
1
本文档详细介绍了在OpenHarmony系统中实现串口服务访问的实战案例。主要内容包括开发环境准备、创建eTS项目、生成串口NAPI库、实现串口异步回调以及模块注册等步骤。文档提供了具体的代码示例和操作指南,帮助开发者快速掌握鸿蒙系统中串口服务的开发方法。通过本文档,开发者可以学习如何在eTS项目hap包中实现串口访问,并通过JS接口开放给上层应用使用。 在OpenHarmony系统中实现串口服务访问,开发者需要经过多个步骤来完成整个开发流程。准备工作包括对开发环境进行配置,确保具备了开发OpenHarmony应用所需的全部工具和配置。开发环境的搭建是任何项目开始前的基石,涉及对操作系统的选择、开发工具的安装以及环境变量的配置。完成这些设置后,开发者可以创建eTS项目,这是一个以eTS(一种类似于JavaScript的编程语言)为基础的项目结构,便于开发人员快速上手和开发OpenHarmony应用程序。 在eTS项目创建之后,接下来的步骤是生成串口NAPI库,NAPI(Native API)是连接原生代码与eTS代码的桥梁。通过生成NAPI库,开发者可以使得eTS代码能够调用底层串口服务,实现硬件资源的访问和控制。这部分的工作涉及到对OpenHarmony系统底层接口的了解和应用,以及对eTS与C/C++等编程语言混合开发能力的掌握。 实现串口异步回调是提高应用性能的关键步骤之一。在串口通信过程中,异步回调机制可以避免阻塞主线程,从而提升用户体验和应用响应速度。在这部分的开发过程中,开发者需要详细理解OpenHarmony的异步编程模型,并将其应用于串口通信的场景中。文档将提供相应的代码示例和详细的操作指南,帮助开发者实现这一功能。 完成上述功能后,模块注册环节是确保串口服务能够在系统中正确注册和管理的重要步骤。开发者需要将开发完成的串口服务模块注册到OpenHarmony系统中,使其可以被系统识别并加载运行。这一过程涉及对OpenHarmony系统服务管理机制的理解,以及对模块注册流程的遵循。 文档中还将指导如何通过JS接口将串口访问功能开放给上层应用使用。这一步是将底层硬件访问能力转化为上层应用可调用接口的过程,对上层应用的开发者十分关键。它能够使得应用开发者不必深入了解底层硬件的细节,就能实现对串口的访问和控制。这对于简化应用开发流程、提升开发效率有着重要的意义。 整体来说,文档提供的内容覆盖了从开发环境准备到模块注册的全过程,为开发者提供了一条清晰的鸿蒙串口服务开发路径。文档不仅包含了必要的理论知识,更关键的是提供了实际操作中的代码示例和详细的开发指南,极大地方便了开发者快速学习并掌握OpenHarmony系统中串口服务的开发技术。
2026-01-06 16:24:10 23KB 软件开发 源码
1
串口调试助手SSCom32是一款实用的通信接口测试工具,尤其在硬件开发、嵌入式系统调试以及物联网设备通信测试等领域中广泛应用。COM(Communications Port)是计算机上的一种通用串行通信端口,用于连接各种外设,如调制解调器、打印机、GPS接收器等。SSCom32的出现,为开发者提供了一个直观且功能丰富的界面,以方便进行串口通信的调试。 串口通信的基础是RS-232标准,这是一种定义了电压水平、信号引脚分配和通信协议的老式通信规范。SSCom32支持标准的RS-232接口,允许用户配置波特率(常见的有9600、19200、38400等)、数据位(5、6、7、8位)、停止位(1或2位)、校验位(无、奇、偶、标记、空间)等参数,以适应不同设备的通信需求。 在使用SSCom32时,用户可以轻松地发送和接收ASCII或十六进制数据,并实时查看串口收发的情况。软件界面通常包含发送区、接收区和设置区。发送区用于输入要发送的数据,可以一键发送或设置定时发送;接收区则会实时显示接收到的数据,有助于分析通信效果。设置区则提供了对串口参数的详细配置,包括波特率、数据位、停止位、校验位等,以及流控方式(无流控、xon/xoff、硬件流控RTS/CTS)。 此外,SSCom32还具备一些高级特性,如数据过滤、数据解析、字符编码转换等,这对于处理特定格式的通信数据非常有用。例如,用户可以通过设置过滤规则,只显示感兴趣的数据,或者通过解析功能将接收到的原始数据转化为有意义的信息。字符编码转换功能则可以应对不同设备之间可能存在的编码差异问题,确保数据的正确传输。 在实际应用中,SSCom32可以配合各种串口设备进行功能验证,如检测硬件故障、调试固件更新、测试通信协议等。它还可以作为教学工具,帮助初学者理解串口通信的工作原理和调试方法。 SSCom32串口调试助手是一款实用且功能全面的工具,能够极大地提升开发和调试过程的效率。其易用性、灵活性以及强大的数据处理能力,使得它在IT行业中得到了广泛的赞誉和应用。无论是专业人士还是爱好者,都能从这款软件中受益匪浅,提高他们的串口通信调试技能。
2026-01-06 11:10:01 410KB COM;
1
在当今的电子设计领域,Arduino作为一种开源电子原型平台,因其简易性和灵活性而受到了广泛的欢迎和应用。与之搭档的串口屏则是一种带有触摸功能的显示屏,它可以通过串口与Arduino等微控制器通信,从而展示更丰富的用户交互界面。在这样的背景下,"大彩串口屏和Arduino通信示例"这个压缩包文件提供了一系列的实用代码示例,旨在帮助开发者快速学习和实现二者之间的通信。 该压缩包内包含了串口屏的示例代码,这些代码可以展示如何通过串口发送数据来控制屏幕显示,例如显示文本信息、图像以及进行触摸反馈等功能。开发者可以利用这些示例快速理解串口屏的工作原理和基本使用方法,进而根据自己的项目需求进行相应的修改和扩展。 接着,其中的Arduino代码示例则是用于演示Arduino如何接收来自串口屏的指令,并根据指令执行相应的控制逻辑。例如,通过读取串口屏发送过来的信号,Arduino可以控制连接在其上的LED灯、电机或者其他外设的开关和状态变换。这些示例代码为开发者搭建了一个学习和实验的基础平台,帮助他们更直观地理解与串口屏的通信过程和数据处理机制。 另外,压缩包内还包含了一个指令转换工具。这个工具的存在是为了简化通信过程中指令的编码和解码工作。由于Arduino和串口屏之间的通信涉及到数据格式和协议的转换,这个转换工具可以将用户输入的指令转换为串口屏能够识别的格式,或者反过来将串口屏发来的数据转换成Arduino能够理解的形式。这样一来,开发者就可以避免在通信协议转换上的繁琐编程工作,更加专注于应用逻辑的实现。 在这个示例包中,可能还会包含一些基础的文档和说明,用于指导开发者如何安装和配置串口屏,以及如何加载和运行示例代码。这些文档通常是初学者快速入门的宝贵资料,它们有助于开发者迅速克服使用新硬件的门槛。 "大彩串口屏和Arduino通信示例"这个压缩包文件为使用Arduino和串口屏进行项目开发的工程师和爱好者们提供了一个方便的起点。通过这些示例代码和工具,用户可以更加轻松地掌握基本的通信技巧,并在此基础上创造出更多富有创意和实用价值的电子作品。
2026-01-05 14:06:56 163.35MB
1
本文深入解析了STM32双串口DMA互透传技术,该技术广泛应用于工业控制、智能网关和嵌入式调试系统中,实现串口设备数据的透明转发。通过利用STM32的DMA与空闲中断(IDLE Interrupt)机制,可以构建接近“零CPU占用”的串口桥接系统。文章详细介绍了DMA的优势、USART+DMA的组合配置、缓冲区设计、IDLE中断处理帧边界的方法,以及实际应用中的常见问题与对策。实测表明,该方案在STM32F407平台上可实现2Mbps波特率下的双向透传,CPU占用率低于3%,数据完整率接近100%。 在深入探讨STM32双串口DMA透传技术的过程中,首先需要了解的是直接内存访问(DMA)技术,以及如何在STM32微控制器上实现这一技术。STM32是广泛应用于工业控制、智能网关和嵌入式调试系统中的32位ARM Cortex-M系列微控制器。DMA技术允许外设直接读写系统内存,无需CPU参与数据传输过程,从而大量减少CPU的负担,提高整体系统效率。 文章中详细介绍了如何利用STM32的DMA功能来实现双串口的透明数据转发,即透传。在此应用中,DMA与串口空闲中断(IDLE Interrupt)机制相结合,使得微控制器能够以非常低的CPU占用率处理高速串口数据流。在双串口模式下,一个串口负责接收外部设备的数据,另一个串口则将这些数据转发到另一个设备,这一过程中CPU几乎不参与数据的搬运工作。 文章进一步展开讨论了USART+DMA组合配置的方法,这包括了双缓冲机制和IDLE中断处理帧边界的技术。在双缓冲机制下,一个缓冲区用于数据的接收,另一个用于数据的发送。当接收缓冲区满时,DMA可以自动切换到另一个缓冲区继续工作,同时通过中断通知CPU处理已满的缓冲区,这样可以实现连续的数据流处理而不会出现数据丢失。 在实际应用中,透传技术面临的一些挑战和问题也得到了探讨。作者针对这些问题提出了有效的解决方案,例如如何确保数据的完整性和传输的连续性,以及如何优化内存的使用和处理速度。 文章通过实验验证了该透传技术的性能。在使用STM32F407微控制器平台进行测试时,该技术能够达到2Mbps的波特率下进行双向数据透传,并且CPU占用率低于3%,数据完整率接近100%。这样的性能指标充分展示了该透传技术在实际应用中的优越性和可靠性。 由于微控制器的资源通常有限,尤其是在内存和处理能力方面,因此对于在这些条件下实现高速和高效的数据通信,STM32双串口DMA透传技术显得尤为宝贵。它不仅提高了数据处理的效率,而且在减轻CPU负担的同时,还确保了数据传输的高效性和准确性。对于设计高性能的嵌入式系统和工业控制设备,该技术提供了一种高效的数据处理方案,具有广泛的应用前景。 文章对于STM32双串口DMA透传技术进行了全面而深入的探讨,从DMA技术基础到实际应用中的挑战与对策,再到性能验证,提供了丰富的内容,为相关领域的研究和开发提供了重要的参考价值。
2026-01-04 22:00:05 7KB 软件开发 源码
1