基于GADF-CNN-LSTM模型的齿轮箱故障诊断研究:从原始振动信号到多级分类与样本分布可视化,基于GADF-CNN-LSTM模型的齿轮箱故障诊断系统:东南大学数据集的Matlab实现与可视化分析,基于GADF-CNN-LSTM对齿轮箱的故障诊断 matlab代码 数据采用的是东南大学齿轮箱数据 该模型进行故障诊断的具体步骤如下: 1)通过GADF将原始的振动信号转化为时频图; 2)通过CNN-LSTM完成多级分类任务; 3)利用T-SNE实现样本分布可视化。 ,基于GADF-CNN-LSTM的齿轮箱故障诊断; 东南大学齿轮箱数据; 原始振动信号转化; 多级分类任务; T-SNE样本分布可视化。,基于GADF-CNN-LSTM的齿轮箱故障诊断方法及其Matlab实现
2025-04-29 09:58:45 1.44MB sass
1
自然语言处理课程设计资源。自然语言处理课程设计之LSTM模型训练中文语料。使用Bi-LSTM模型训练中文语料库,并实现根据已输入中文词预测下一个中文词。train.py:进行训练的源代码。model.py:模型的类定义代码。cnpre.py:用于保存自定义的Dataset。dotest.ipynb:进行测试的jupyter notebook文件,在可以使用两个模型参数进行句子生成。 自然语言处理是计算机科学和人工智能领域中一个重要的分支,它致力于使计算机能够理解、解释和生成人类语言,从而实现人机之间的有效沟通。随着深度学习技术的发展,长短期记忆网络(LSTM)作为一种特殊的循环神经网络(RNN),因其在处理和预测序列数据方面的出色性能而广泛应用于自然语言处理任务中。LSTM能够捕捉长距离依赖关系,并通过其独特的门控机制解决传统RNN在处理长序列时出现的梯度消失或梯度爆炸问题。 中文语料库的构建对于中文自然语言处理至关重要。由于中文语言的特点,如没有明显词界限、语句结构复杂等,中文处理在很多方面要比英文更加困难。因此,训练一个能够有效理解中文语料的LSTM模型需要精心设计的语料库和模型结构。Bi-LSTM模型LSTM模型的一种变体,它利用正向和反向两个LSTM进行信息处理,可以在一定程度上提高模型对于文本语义的理解能力。 在本课程设计中,通过使用Bi-LSTM模型训练中文语料库,学生可以学习到如何准备数据集、设计和实现网络结构、以及训练模型的整个流程。学生将学习如何处理中文文本数据,包括分词、去停用词、构建词向量等预处理步骤。这些步骤对于提高模型训练的效果至关重要。 课程设计中包含了多个关键文件,每个文件都承担着不同的角色: - train.py:这是一个Python脚本文件,负责执行模型的训练过程。它会读取准备好的中文语料库,设置模型参数,并运行训练循环,输出训练结果和模型参数。 - model.py:在这个Python文件中,定义了Bi-LSTM模型的类。这包括模型的网络架构,例如输入层、隐藏层、输出层以及如何组织这些层来构建完整的模型结构。这个文件为训练过程提供了模型的蓝图。 - cnpre.py:这个文件用于保存自定义的Dataset类。在PyTorch框架中,Dataset是一个抽象类,需要被继承并实现特定方法来定制数据集。在自然语言处理任务中,这通常包括加载文本数据、分词、编码等预处理步骤。 - dotest.ipynb:这是一个Jupyter Notebook文件,用于测试模型的性能。通过这个交互式的文档,用户可以加载训练好的模型,并使用自定义的句子生成模型参数进行测试。这使得实验者能够直观地看到模型对特定输入的处理效果和生成的句子。 通过本课程设计,学生将掌握如何运用Bi-LSTM模型在中文语料上进行训练和预测,这不仅能够加深对自然语言处理技术的理解,而且能够提高解决实际问题的能力。同时,通过实践操作,学生还能学习到如何调试和优化模型性能,以达到最佳的预测效果。 自然语言处理课程设计之LSTM模型训练中文语料为学生提供了一个实践平台,让他们能够在实际操作中了解和掌握最新的自然语言处理技术和深度学习模型。通过对Bi-LSTM模型的训练和测试,学生不仅能够学会如何处理复杂的中文文本数据,而且能够加深对语言模型及其在自然语言处理中应用的认识。这样的课程设计对于培养学生解决实际问题的能力、提升理论与实践相结合的技能具有重要意义。
2025-04-14 09:42:35 13KB 自然语言处理 NLP Bi-LSTM 中文语料
1
LSTM (Long Short-Term Memory) 是一种特殊的循环神经网络(RNN)架构,用于处理具有长期依赖关系的序列数据。传统的RNN在处理长序列时往往会遇到梯度消失或梯度爆炸的问题,导致无法有效地捕捉长期依赖。LSTM通过引入门控机制(Gating Mechanism)和记忆单元(Memory Cell)来克服这些问题。 以下是LSTM的基本结构和主要组件: 记忆单元(Memory Cell):记忆单元是LSTM的核心,用于存储长期信息。它像一个传送带一样,在整个链上运行,只有一些小的线性交互。信息很容易地在其上保持不变。 输入门(Input Gate):输入门决定了哪些新的信息会被加入到记忆单元中。它由当前时刻的输入和上一时刻的隐藏状态共同决定。 遗忘门(Forget Gate):遗忘门决定了哪些信息会从记忆单元中被丢弃或遗忘。它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 输出门(Output Gate):输出门决定了哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。同样地,它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 LSTM的计算过程可以大致描述为: 通过遗忘门决定从记忆单元中丢弃哪些信息。 通过输入门决定哪些新的信息会被加入到记忆单元中。 更新记忆单元的状态。 通过输出门决定哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。 由于LSTM能够有效地处理长期依赖关系,它在许多序列建模任务中都取得了很好的效果,如语音识别、文本生成、机器翻译、时序预测等。
2025-04-10 13:52:02 7KB LSTM
1
基于CNN-LSTM模型的网络入侵检测方法,使用的是UNSW-NB15数据集,代码包含实验预处理,混淆矩阵输出,使用分成K折交叉验证,实验采用多分类,取得良好的效果。 Loss: 0.05813377723097801 Accuracy: 0.9769517183303833 Precision: 0.9889464676380157 Recall: 0.9685648381710052
2024-09-20 20:56:16 397KB lstm jupyter
1
使用Yelp评论进行情感分类python程序源代码TSNE和PCA探索单词表示LSTM模型LinearSVC,BernoulliNB,MLPClassifier 情感分类情感分类是情感分类的项目。(以Yelp审查为输入)资料资源什么是新的3.1探索其他数字特征(而不是仅文本)利用“有用”信息(由yelp提供的属性)进行weighted samples实验使用“均值”处理缺失值2.4伯特转移学习建立和调整bert模型。可视化数据分配2.3改变表达句子向量的方式建立和调整LSTM模型。2.2建立和调整LinearSVC模型。建立和调整BernoulliNB模型。建立和调整MLPClassifier模型。建立和调整LogisticRegression模型。建立和调整DecisionTree模型。2.1使用W2F创建情感分类训练word representation模型使用TSNE和PCA探索单词表示1.1使用tf-idf创建情感分类建立和调整LinearSVC模型。 使用Yelp评论进行情感分类python程序源代码TSNE和PCA探索单词表示LSTM模型LinearSVC,B.zi
2024-05-28 20:19:57 1.52MB python lstm
1
Python基于LSTM模型实现预测股市源代码+模型+数据集
2024-02-27 16:37:52 3.92MB python lstm 数据集
深度学习模型现在很火,应用的领域也是各方各面。在序列预测方面,当属LSTM模型的应用最广。我基于matlab编写了用LSTM模型实现多步预测时间序列的程序代码。序列数据是我随机生成的,如果有自己的数据,就可以自己简单改一下代码,读取txt或excel都可以。注意读取后的序列必须命名为行向量。代码最后还提供了误差分析部分,展示了绝对误差、MAE、RMSE、MAPE共4个误差指标,可供参考。代码基于matlab2021版编写,适用于2018版之后的所有版本。
2024-01-12 14:18:10 3KB matlab lstm 文档资料 开发语言
神经网络模型普遍存在过拟合问题,所以采用增加3层丢弃层避免梯度消失的问题,利用adam优化器自动优化学习率。 本文使用ReLu Activation函数激活参数特征,然后连接Batch Normalization层和Dropout层,再用Flatten层对数据进行平滑处理,最后将数据输入两个堆叠的LSTM层输出预测数据。 经过多次调整超参数后,确定丢弃率为0.15。 为该单特征LSTM模型的损失变化图。由图可见,该模型损失函数的下降速度极快,在训练次数达到三百次左右时,损失已经基本维持在0附近,并逐步趋于平稳,说明该模型能够很快地收敛到一个较优的参数状态,避免了过拟合或欠拟合的问题。该模型的整体MAPE最低时达到10.69%,整体的拟合程度较高。
2023-10-11 23:01:33 6KB lstm 神经网络
1
Python基于LSTM模型的双色球预测源码
2023-07-22 19:43:20 26KB python lstm 软件/插件 双色球预测
1
在时间序列预测问题中,建立LSTM模型,采用python语言代码实现
2023-04-14 23:11:57 388KB lstm python 软件/插件
1