YOLOv8是YOLO(You Only Look Once)目标检测系列的一个最新版本,它在前代的基础上进行了优化,提高了目标检测的速度和准确性。这个压缩包包含的是YOLOv8的源代码以及预训练模型文件,使得即使在无法访问外部网络的情况下,用户也能进行目标检测的实践和研究。 YOLO(You Only Look Once)是一种实时的目标检测系统,其核心思想是通过单个神经网络同时预测图像中的边界框和类别概率。自YOLOv1发布以来,该系列已经经历了多次迭代,每次更新都带来了性能的提升和新特性的引入。 YOLOv8源码提供了整个模型的实现,包括网络结构的设计、损失函数的定义、训练过程的控制等。开发者可以通过阅读和理解源码来学习目标检测算法的细节,以及如何使用深度学习框架(如PyTorch)构建这样的复杂模型。源码中可能包含了模型的训练脚本、数据预处理模块、评估指标计算等功能,这为用户提供了定制化和扩展的基础。 `yolov8n`和`s.pt`文件是预训练模型的表示。`yolov8n`可能是YOLOv8的一个轻量级版本,可能针对小规模硬件或者速度有更高要求的场景。`s.pt`文件则是模型的权重,表示模型在大量数据上训练后的学习结果。用户可以直接加载这些预训练模型,对新的图像进行目标检测,而无需从头开始训练模型,大大节省了时间和计算资源。 `ultralytics-8.1.0`这个文件可能是指Ultralytics团队的YOLOv8版本,Ultralytics是一家专注于计算机视觉技术的公司,他们维护着YOLO系列的开源实现,并且持续进行优化。这个版本可能包含了训练数据集、模型配置文件、模型评估工具等,用户可以借此进一步了解和评估YOLOv8的性能。 在实际应用中,用户可以利用这些资源进行以下操作: 1. 学习和研究YOLOv8的网络架构和训练策略。 2. 针对特定任务调整和微调预训练模型。 3. 在本地环境下进行目标检测,避免因网络限制无法使用云服务的问题。 4. 评估YOLOv8与其他目标检测模型的性能差异。 5. 将YOLOv8集成到自己的项目或产品中,实现快速的目标检测功能。 这个压缩包为无法访问外网的用户提供了一个完整的YOLOv8解决方案,包括了模型的源代码和预训练权重,使得用户能够在本地环境中进行目标检测的研究和应用开发。
2024-07-05 20:09:19 27.82MB 目标检测
1
yolov8(2023年8月版本),已经下好yolov8s.pt和yolov8n.pt,需要创建的文件夹都以创建,方便大家不用再去GitHub下载 可以搭配该博客:https://blog.csdn.net/weixin_43366149/article/details/132206526?spm=1001.2014.3001.5501
2024-03-25 10:19:56 367.44MB yolo
1
YOLOv8预训练权重文件集合(YOLOv8n,YOLOv8s,YOLOv8m,YOLOv8l,YOLOv8x) YOLOv8 pretrained Detect models are shown here. Detect, Segment and Pose models are pretrained on the COCO dataset, while Classify models are pretrained on the ImageNet dataset. Model size (pixels) mAPval 50-95 Speed CPU ONNX (ms) Speed A100 TensorRT (ms) params (M) FLOPs (B) YOLOv8n 640 37.3 80.4 0.99 3.2 8.7 YOLOv8s 640 44.9 128.4 1.20 11.2 28.6 YOLOv8m 640 50.2 234.7 1.83 25.9 78.9 YOLOv8l 640 52.9 375.2 2.39 43.7 165.2 YOLOv8x 640 53
2023-10-09 15:30:13 269.36MB YOLOv8 YOLO 深度学习 预训练权重
1
包含两个数据集:mnist160和imagenet100 三个权重参数文件:yolov8n-seg.pt,yolov8n-cls.pt,yolov8n-pose.pt
2023-09-25 20:35:14 17.09MB 数据集
1
yolov8n.pt模型文件
2023-05-09 22:59:30 6.23MB yolov8n.pt yolov8n
1