YOLOv5是一种高效的目标检测模型,源自亚利桑那州立大学的 Ultralytics 团队。这个模型在计算机视觉领域被广泛使用,因为它能够快速地在图像中检测出多种对象,同时保持相当高的精度。YOLO(You Only Look Once)系列自2016年首次提出以来,经历了多次迭代,而YOLOv5是该系列的最新版本。 标题"yolov5源码+yolov5n.pt、yolov5s.pt文件整合"表明这是一个包含YOLOv5模型源代码和预训练权重的资源包。`yolov5n.pt`和`yolov5s.pt`是两种不同配置的YOLOv5模型的预训练权重文件。`yolov5n`通常代表轻量级网络,适用于计算资源有限的环境,而`yolov5s`则是一个稍大一些的模型,通常提供更好的性能但需要更多的计算资源。 描述中的"适合外网访问不了的使用"意味着这个资源包对于那些无法直接从Ultralytics的GitHub仓库下载或者由于网络限制的人特别有用。用户可以离线获取完整的YOLOv5实现,包括源代码和预训练模型,从而进行目标检测任务。 标签"软件/插件 yolov5 目标检测"揭示了这个资源的主要应用领域。YOLOv5可以被视为一个软件工具,它通过加载`pt`权重文件,配合源代码,能够在不同的平台上执行目标检测。这里的“插件”可能指的是它可以集成到其他软件或系统中,以实现自动化的目标检测功能。 压缩包内的文件`yolov5-7.0`可能是指YOLOv5的第7个版本源代码,这通常包含了模型的Python实现,模型结构定义,训练脚本,以及相关的数据处理工具等。用户可以解压此文件,根据提供的文档和示例,学习如何运行模型进行预测,训练自己的数据集,或者调整模型参数以优化性能。 总结一下,YOLOv5是一个先进的目标检测框架,`yolov5n.pt`和`yolov5s.pt`是不同规模的预训练模型权重,可用于不同需求的场景。这个资源包提供了一种离线获取YOLOv5完整组件的方式,包括源代码和预训练模型,方便用户在无法访问外网时进行目标检测工作。对于想要在计算机视觉项目中实施目标检测的开发者来说,这是一个非常有价值的资源。
2024-10-16 20:33:13 17.28MB yolov5 目标检测
1
yolov5源码阅读 1.代码结构阅读 2.代码功能阅读 3.代码细节的思考与修改 4.代码实现功能验证
2023-02-23 12:00:36 4.03MB yolov5 深度学习 计算机视觉 源码
1
YOLOv5 源码无改动可直接用
2023-01-15 07:17:18 999KB 深度学习 目标检测
1
1、yolov5检测源码+EDS模型文件+使用说明 2、附有训练pr曲线、损失值曲线、召回率曲线、精确度曲线、mAP等评估指标曲线 3、迭代200次,模型拟合较好。
YOLOv5源码下载连接
2022-05-29 12:05:05 469.64MB 源码软件
1
使用tensorRT部署的yolov5源码,资源讲解在博客https://blog.csdn.net/Z960515/article/details/121975944
2021-12-24 12:08:06 197.2MB tensorRT yolov5 深度学习
1
yolov5、Wiin32DiskImager、Etcher等
2021-11-28 21:00:51 775.97MB yolov5源码 Etcher和Win32Disk MobaXterm
1
yolov5源码参考github地址:包括详细的环境配置
2021-11-01 16:02:38 242B yolov5 ros
1
使用TensorFlow 2实现 火车 在config.py更改数据集路径和class_dict 在config.py选择版本 可选, python generate.py为您的数据集生成锚点并在config.py更改锚点 运行python train.py进行培训 测试 运行python test.py 数据集结构 ├── Dataset folder ├── IMAGES ├── 1111.jpg ├── 2222.jpg ├── LABELS ├── 1111.xml ├── 2222.xml ├── train.txt ├── test.txt 笔记 xml文件应为PascalVOC格式 train.txt包含不带扩展名的图像名称 推荐(适用于docker用户) docker pu
2021-10-19 21:17:16 17KB tensorflow tf2 object-detection tensorflow2
1
yolov5源码DAMG数据集class6
2021-10-15 11:09:06 158.96MB yolov5
1