yolov5改进 YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示: 输入端:在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放; 基准网络:融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构; Neck网络:目标检测网络在BackBone与最后的Head输出层之间往往会插入一些层,Yolov5中添加了FPN+PAN结构; Head输出层:输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。 本资源包括对yolov5的改进策略和案例分析进行了详细阐述,有需要的朋友可以下载学习。
2024-05-02 16:22:56 6.5MB 目标检测 yolov5 人工智能
1
改进yolov5(多检测头+注意力机制+repvgg结构)pytorch源码+项目说明.zip 集成yolov5(v6.0), 注意力机制, 和repvgg结构 添加了多头检测代码,使用train_multiple_detection_head.py文件进行训练 添加了检测+关键点代码,使用train_key_point.py文件进行训练