行人检测技术是计算机视觉领域中的一个重要应用,其目的在于通过算法自动识别图像或视频中的人体轮廓,并对其进行定位与跟踪。随着智能交通和安防监控系统的发展,行人检测技术在实际应用中显得愈发重要。Yolo(You Only Look Once)是一种流行的实时对象检测系统,以其速度快、准确性高而闻名,被广泛应用于各种检测任务中。 Citypersons数据集是为行人检测任务而构建的一个大型数据集,它包含了来自不同城市街道场景的大量标注行人图片。这些图片被采集自真实的街头场景,并经过仔细的标注,为行人检测算法的开发和测试提供了坚实的基础。 将Citypersons数据集转换为Yolo格式,意味着这些数据能够直接用于Yolo算法的训练。Yolo格式通常包括了图片文件和对应的标注文件,标注文件中包含了每个目标对象的位置信息和类别信息。在Yolo格式中,位置信息通常用边界框的中心点坐标(cx, cy)、宽度(w)和高度(h)来表示。同时,Yolo格式也支持多种图像格式,如.jpg、.png等,这使得数据集具有较好的兼容性和灵活性。 转换为Yolo格式后的Citypersons数据集,不仅能够满足Yolo算法的输入要求,而且能够方便研究人员和开发者进行模型的训练和验证。利用这一数据集,开发者可以在限定时间内完成大量数据的快速处理,同时也能够在数据集的不同子集上进行交叉验证,以获得更为稳定和可靠的训练结果。此外,Yolo格式的数据集还有助于算法的实时部署,因为在实际应用中,检测速度和准确性往往是至关重要的指标。 在转换Citypersons数据集为Yolo格式的过程中,需要确保标注信息的准确性,因为任何标注错误都可能导致算法训练效果不佳。转换工作通常涉及到编写脚本或者程序,该程序能够读取原始的标注信息,并将其转换为Yolo格式所需的标注信息。这一过程可能包括将原本的矩形边界框转换为相对位置和尺寸的表示,或者处理图片的尺寸以满足Yolo模型的输入要求。 Citypersons数据集转换为Yolo格式的举措,为那些希望利用Yolo算法进行行人检测研究的学者和工程师们提供了便利。这种转换不仅增强了数据集的可用性,也为提高行人检测系统的性能奠定了基础。随着技术的不断进步,我们有理由相信,基于Yolo的行人检测技术将在未来的智能交通和安全监控领域中发挥更大的作用。
2025-04-08 17:56:02 866KB 行人检测 yolo算法
1
基于 YOLO(You Only Look Once)算法实现的停车场车牌识别计费系统可以实现自动识别车牌、记录车辆进出时间以及计算停车费用等功能。下面是一个基本的系统架构和功能描述: ### 系统架构: 1. **摄像头部署:** 在停车场入口和出口处安装摄像头,以捕捉车辆进出场景。 2. **YOLO模型部署:** 使用基于 YOLO 的目标检测模型,针对停车场车牌的识别,训练一个车牌检测模型。可以使用预训练的 YOLO 模型,在其基础上进行微调以适应特定的车牌识别任务。 3. **车牌识别算法:** 针对检测到的车牌区域,使用 OCR(Optical Character Recognition,光学字符识别)算法对车牌进行识别。常用的 OCR 算法包括基于深度学习的方法(如 CRNN、CTC 等)以及传统的图像处理方法(如基于模板匹配的方法)。 4. **计费系统:** 根据车辆的进出时间和停车时长,计算停车费用。可以根据停车场的具体规则和收费标准来确定计费方式,比如按时计费或按次计费。 5. **数据库存储:** 将识别到的车牌信息以及进出时间等记录保存到数据
2024-04-13 21:14:13 191.77MB yolo
1
YOLO 是一种使用神经网络提供实时对象检测的算法。该算法因其速度和准确性而广受欢迎。它已在各种应用中用于检测交通信号、人员、停车计时器和动物。 YOLO 是“You Only Look Once”一词的缩写。这是一种算法,可以(实时)检测和识别图片中的各种对象。YOLO 中的对象检测是作为歼毁含回归问题完成的,并提供检测到的图像的类别概率。 YOLO 算法余轮采用卷积神经网络 (CNN) 实时检测物体。顾名思义,该算法只需要通过神经网络进行一次前向传播来检测物体。 这意味着整个图像中的预测是在单个算法运行中完成的。CNN 用于同时预测各种类别概率和边界框。 YOLO 算法由各种变体组成。
2024-03-20 13:53:03 173KB 毕业设计
1
毕设人脸表情数据集_喜怒哀乐惊讶带voc和yolo标签.zip 毕设用的数据集图片,自己收集标注,voc和yolo格式标签
2023-02-28 10:58:34 14.28MB 表情识别 yolo算法 表情数据集 voc格式
1
1.目标分类 2.目标定位 3.特征点检测 4.滑动窗口检测 5.卷积的滑动窗口实现 3.交并比(IOU) 4.非极大抑制(NMS) 6.候选区域(Region
2023-02-13 15:26:51 12.58MB 机器学习 目标检测 算法 python
1
1、基于yolov5算法实现道路卡车识别检测源码+模型文件+评估指标曲线+使用说明 2、附有训练、loss(损失值)下降曲线、Recall(召回率)曲线、precision(精确度)曲线、mAP等评估指标曲线 3、9000多张图片数据集训练,迭代200次,模型拟合较好。 4、识别一个类别,“truck” 【备注】有相关使用问题,可以私信留言跟博主沟通。
基于yolov5算法实现交通灯识别检测源码+模型文件+评估指标曲线+使用说明 1、基于yolov5车交通灯识别检测模型_附评估指标曲线(高mAP、召回率)及使用说明 2、附有训练、loss(损失值)下降曲线、Recall(召回率)曲线、precision(精确度)曲线、mAP等评估指标曲线 3、迭代200次,模型拟合较好。 【备注】有相关使用问题,可以私信留言跟博主沟通。
1、基于yolov5算法实现绝缘子识别检测源码+模型文件+评估指标曲线+使用说明 2、附有训练、loss(损失值)下降曲线、Recall(召回率)曲线、precision(精确度)曲线、mAP等评估指标曲线 3、迭代200次,模型拟合较好。 4、识别类别只有“绝缘子”一类 【备注】有相关使用问题,可以私信留言跟博主沟通。
1、基于yolov5算法实现口罩识别检测源码+模型文件+评估指标曲线+使用说明 2、附有训练、loss(损失值)下降曲线、Recall(召回率)曲线、precision(精确度)曲线、mAP等评估指标曲线 3、识别类别为:“戴口罩”,“不戴口罩” 4、大量数据集训练,迭代200次,模型拟合较好。 【备注】有相关使用问题,可以私信留言跟博主沟通。
Yolov1、Yolov2、Yolov3、Yolov4、Yolov5、YoloX、Yolov6的算法迭代史,做成ppt形式希望帮助到大家
2022-11-24 19:32:59 10.24MB 目标检测 Yolo
1