随机微分方程的黑盒变分推断
Lotka-Volterra示例的Tensorflow实现在 , , 和 (ICML,2018)中进行了。
示例:Lotka-volterra
在这里,我们在本文的第5.1节中演示示例“具有未知参数的多个观察时间”的实现。 也就是说,在已知测量误差方差的情况下,二维Lotka-Volterra SDE的全参数推断观察到的离散时间步长为10。
系统要求
以下示例已使用tensorflow 1.5,numpy 1.14和python 3进行了测试。尚未在任何依赖项的更新和/或更高版本上进行严格测试。 如有任何相关问题,请参阅联系部分。
此示例还使用张量板(1.5)可视化训练。 这样,您应该在lotka_volterra_data.py中为张量板输出指定路径。 例如:
PATH_TO_TENSORBOARD_OUTPUT = "~/Documents/my_
1