该程序将 CEV(波动率过程的恒定弹性)离散化,并使用该过程使用 Monte 卡罗方法。
2023-03-31 01:24:29 1KB matlab
1
DAX 数据的对冲分析说明了本书第 10 章中讨论的主题。 Delta-Gamma 或均值方差对冲。 对于真实数据以及模拟路径。
2023-01-03 01:48:16 1.86MB matlab
1
y作m次多元式拟合的MATLAB代码正则化线性回归与偏差与方差 实施正则化线性回归并将其用于研究具有不同偏差方差属性的模型 此代码已在octave版本4.2.1上成功实现 要开始该项目,您将需要下载代码并将其内容解压缩到您希望运行该项目的目录中。 如果需要,在开始本练习之前,请使用Octave中的cd命令更改为该目录。 此代码也可以在MATLAB上运行(您可以尝试)。 将来,我还将尝试在MATLAB上执行此代码。 环境设置说明 有关安装Octave的说明 Project使用Octave(Octave是MATLAB的免费替代品),一种非常适合于数值计算的高级编程语言。 如果您尚未安装Octave,请安装。 八度功能的文档可在上找到。 项目中包含的文件 -八度脚本,可引导您完成项目 -数据集 -功能归一化功能 -函数最小化例程(类似于fminunc) -绘制多项式拟合 -使用您的成本函数训练线性回归 -正则化线性回归成本函数 -产生学习曲线 -将数据映射到多项式特征空间 -生成交叉验证曲线 在整个项目中,您将使用脚本。 这些脚本为问题设置数据集并调用函数。 正则线性回归 在项目的前半部分,
2022-11-24 17:08:21 606KB 系统开源
1
Vulkan的全向灯光的方差阴影贴图 渲染例程: 渲染通过阴影贴图一次绘图调用,写入6层彩色附件 渲染通过高斯滤波器(x方向) 一次绘图调用,单层写入六个颜色附件 渲染通过高斯滤波器(y方向) 同上 在屏幕上渲染通过 一篇讨论细节的博客文章: 控制项: 轨道:向左/向右/向上/向下箭头键 平移:A / D / R / F 前进和后退:W / S 冻结/解冻灯:F1 暂停动画:P
2022-08-23 10:08:31 1023KB vulkan cubemap shadow-mapping C++
1
matlab如何用代码拟合幂函数正则化线性回归与偏差与方差 在本练习中,您将实现正则化线性回归并将其用于研究具有不同偏差方差属性的模型。 在进行编程练习之前,我们强烈建议您观看视频讲座并完成相关主题的复习问题。 要开始练习,您需要下载启动程序代码并将其内容解压缩到您希望完成练习的目录中。 如果需要,在开始本练习之前,请使用Octave / MATLAB中的cd命令更改为该目录。 您也可以在课程网站的“环境设置说明”中找到有关安装Octave / MATLAB的说明。 这种分配有助于我们理解偏差和方差如何与模型的可预测性不同。 本练习中包含的文件 ex5.m-引导您完成练习的Octave / MATLAB脚本ex5data1.mat-数据集Submit.m-将解决方案发送到我们服务器的提交脚本featureNormalize.m-功能规范化函数fmincg.m-功能最小化例程(类似于fminunc )plotFit.m-绘制多项式拟合trainLinearReg.m-使用您的成本函数训练线性回归 [1] linearRegCostFunction.m-正则化线性回归成本函数 [2] le
2022-04-27 17:23:59 239KB 系统开源
1
Minimum Variance Unbiased Estimation 最小方差无偏估计程序(MVU)
2022-03-30 18:23:24 1.13MB MVU
1
对原始的钟差数据处理,将其转化为频率数据,通过频率数据求阿伦方差,来分别求解卫星钟的千秒稳,万秒稳,天稳,从而对卫星钟性能进行分析。
2022-03-07 09:30:51 37KB 阿仑方差 性能分析
1
y作m次多元式拟合的MATLAB代码机器学习(MATLAB)-正则化线性回归和偏差/方差 斯坦福大学的机器学习课程。 环境 macOS Catalina(版本10.15.3) MATLAB 2018 b 数据集 ex5data1.mat 此仓库中包含的文件 ex5.m-分步练习的Octave / MATLAB脚本 ex5data1.mat-数据集 Submit.m-将解决方案发送到我们的服务器的提交脚本 featureNormalize.m-功能归一化功能 fmincg.m-函数最小化例程(类似于fminunc) plotFit.m-绘制多项式拟合 sigmoid.m-Sigmoid函数 trainLinearReg.m-使用成本函数训练线性回归 [⋆] linearRegCostFunction.m-正则化线性回归成本函数 [⋆] learningCurve.m-生成学习曲线 [⋆] polyFeatures.m-将数据映射到多项式特征空间 [⋆] validationCurve.m-生成交叉验证曲线 第1部分:正则线性回归 我们将执行正规化线性回归,以利用水库中水位的变化预测从大坝
2022-02-22 16:15:37 2.3MB 系统开源
1
y作m次多元式拟合的MATLAB代码偏差与方差分析-回归 实施正则化线性回归,并将其用于研究具有不同偏差方差属性的模型。 编程练习5:正则线性回归和偏差与方差机器学习简介在本练习中,您将实现正则线性回归并将其用于研究具有不同偏差方差属性的模型。 在开始编程之前,我们强烈建议您观看视频讲座并完成相关主题的复习问题。 要开始练习,您需要下载启动程序代码并将其内容解压缩到您希望完成练习的目录中。 如果需要,在开始本练习之前,请使用Octave / MATLAB中的cd命令更改为该目录。 您也可以在课程网站的“ \\环境设置说明”中找到安装Octave / MATLAB的说明。此练习ex5.m中包含的文件-Octave / MATLAB脚本可逐步完成练习ex5data1.mat-数据集提交。 m-将解决方案发送到我们服务器的提交脚本featureNormalize.m-功能归一化函数fmincg.m-函数最小化例程(类似于fminunc)plotFit.m-绘制多项式t trainLinearReg.m-使用成本函数训练线性回归[ ?RegularRegCostFunction.m-正则化线性
2021-11-19 15:22:20 20KB 系统开源
1
Markowitz-Mean-Variance-Portfolio优化
2021-11-18 20:38:58 115KB JupyterNotebook
1