Kaggle COVID-19临床试验EDA 我第一次尝试使用Kaggle上与COVID-19相关的临床试验数据集进行EDA。 有关数据集的更多信息,访问: :
2023-01-04 15:49:57 2.48MB eda clinical-trials covid-19 JupyterNotebook
1
欧共体 Eudract-py是一个Python库,用于搜索上的临床试验。 安装 使用软件包管理器安装eudract-py: pip install eudract-py 用法 搜索试验 搜索临床试验并返回摘要或完整的协议详细信息。 from eudract import Eudract eu = Eudract () eu . search ( "EFC14280" , "summary" ) # return trial summary in plain text format eu . search ( "EFC14280" , "summary" , True ) # return trial summary in dict eu . search ( "covid" , "full" , True ) # return all trial full details with
2022-10-31 23:41:36 6KB python clinical-trials pharmaceuticals Python
1
保证 R 包 这个 R 包库根据一些初始试验的数据简化了临床试验成功的一些计算。 贯穿始终的方法是生成效应大小的先验,使用初始试验数据生成效应大小的后验分布,然后使用该后验模拟稍后的试验。 这是一种本质上的贝叶斯方法。 安装 # install.packages('devtools') devtools :: install_github( " scientific-computing-solutions/assurance " , build_vignettes = TRUE ) 联系或了解更多详情。
1
Clinical-Trials:临床试验数据
2022-05-21 20:20:06 407KB JupyterNotebook
1
在ClinicalTrials.gov上进行数据挖掘40,000多项肿瘤学研究 是政府资助的注册机构,注册了超过200,000种药物和医疗设备的临床试验。 从2007年开始,法律要求几乎所有在美国拥有至少一个开放站点的重大研究都必须在该站点上注册。 此存储库包含2016年8月下载的40,000项肿瘤学试验的探索性数据分析。
2021-12-28 15:24:46 11.31MB JupyterNotebook
1
CDISC:我正在收集有关CDISC的信息
2021-10-30 07:58:23 24.14MB xml fda clinical-trials cdisc
1
ClinicalTrials.gov是一个在全球范围内进行的私人和公共资助的临床研究的数据库。它由国立卫生研究院维护。所有数据都是公开可用的,并且该站点提供直接下载功能,这使使用相关数据进行分析变得非常容易。该数据集由与现场展示的COVID 19研究相关的临床试验组成。 COVID clinical trials.csv COVID-19 Clinical Trials dataset_COVID-19 CLinical trials studies_datasets.zip
2021-09-24 10:40:06 22.55MB 数据集
1
Product Details Paperback: 254 pages Publisher: Springer; 1 edition (Nov 16 2005) Language: English ISBN-10: 0387277811 ISBN-13: 978-0387277813 Product Description: Statistical Monitoring of Clinical Trials: Fundamentals for Investigators introduces the investigator and statistician to monitoring procedures in clinical research. Clearly presenting the necessary background with limited use of mathematics, this book increases the knowledge, experience, and intuition of investigations in the use of these important procedures now required by the many clinical research efforts. The author provides motivated clinical investigators the background, correct use, and interpretation of these monitoring procedures at an elementary statistical level. He defines terms commonly used such as group sequential procedures and stochastic curtailment in non-mathematical language and discusses the commonly used procedures of Pocock, O’Brien–Fleming, and Lan–DeMets. He discusses the notions of conditional power, monitoring for safety and futility, and monitoring multiple endpoints in the study. The use of monitoring clinical trials is introduced in the context of the evolution of clinical research and one chapter is devoted to the more recent Bayesian procedures.
2020-01-03 11:26:42 1.79MB Clinical trials brownian motion
1