通过卷积神经网络学习人机交互 在我在东京大学的研究实习期间保存所做工作的资料库。 日本农业技术研究院。 这项研究是关于使用卷积神经网络(CNN)通过从力传感器中学习数据模式来对人类的几种触摸交互类型进行分类(p,划痕,轻击,硬压和中性)。 该传感器将人的触觉转换为3维力数据。 数据 每0.02秒(50 fps)使用pySerial获取数据。 十个人每次对传感器进行30次触摸交互并记录数据。 从数据统计数据中推断出一个合适的阈值,以区分噪声中的正信号和一个正事件(样本)的合适数量的帧。 通过将每个数据样本内插到40帧并对它们进行归一化以减少零偏噪声的影响,对数据进行预处理。 由于该数据集属于实验室中的个人,因此此处未共享。 即将完成涵盖受试者身份以保护其隐私的过程,然后将发布数据集。 该模型 使用Python中的Keras框架使用数据训练了CNN模型。 Adam优化器用于lr = 1
1