1. 二维卷积实验 手写二维卷积的实现,并在至少一个数据集上进行实验,从训练时间、预测精度、Loss变化等角度分析实验结果(最好使用图表展示)(只用循环几轮即可)。 使用torch.nn实现二维卷积,并在至少一个数据集上进行实验,从训练时间、预测精度、Loss变化等角度分析实验结果(最好使用图表展示)。 不同超参数的对比分析(包括卷积层数、卷积核大小、batchsize、lr等)选其中至少1-2个进行分析。 2. 空洞卷积实验 使用torch.nn实现空洞卷积,要求dilation满足HDC条件(如1,2,5)且要堆叠多层并在至少一个数据集上进行实验,从训练时间、预测精度、Loss 变化等角度分析实验结果(最好使用图表展示)。 将空洞卷积模型的实验结果与卷积模型的结果进行分析比对,训练时间、预测精度、Loss变化等角度分析。 不同超参数的对比分析(包括卷积层数、卷积核大小、不同dilation的选择,batchsize、lr等)选其中至少1-2个进行分析(选做)。 3. 残差网络实验 实现给定结构的残差网络,在至少一个数据集上进行实验,从训练时间、预测精度、L
2024-08-21 10:23:09 2.31MB 神经网络
1
内容包含详细注释 代码中有数据集的下载程序: 人工构造简单二分类数据集,两个数据集大小为100,样本特征维度为2,且分别服从均值互为相反数且方差相同的正态分布。两个数据集的样本标签分别为0和1。 Fashion-MNIST数据集,该数据集为一个多类图像分类数据集,包含60000个训练图像样本,10000个测试图像样本。每个样本的数据格式为28*28*1。共10类:dress(连⾐裙)、coat(外套)、 代码内容包括: PyTorch基本操作实验; Torch.nn实现Logistic回归实验、softmax回归实验、实现前馈神经网络(多分类、二分类、回归); 手动实现Logistic回归实验、softmax回归实验、实现前馈神经网络(多分类、二分类、回归); 多分类实验torch.nn实现Dropout和多分类实验torch.optim实现L2范数正则化; 对多分类任务中的模型评估隐藏层层数和隐藏单元个数对实验结果的影响;
1
Torch.nn模块是Pytorch为神经网络设计的模块化接口,定义了不同的网络层。Torch.nn 利用autograd来定义模型,数据结构为Module。代码运行在Python 3.9.7版本以及Pytorch 1.10版本中。代码均在pycharm上运行,均能完美运行!
2022-08-11 16:05:23 4KB pytorch 深度学习 logistic
1
Pythorch中torch.nn.LSTM()参数详解;Pythorch中torch.nn.LSTM()参数详解;Pythorch中torch.nn.LSTM()参数详解;Pythorch中torch.nn.LSTM()参数详解;Pythorch中torch.nn.LSTM()参数详解;Pythorch中torch.nn.LSTM()参数详解;Pythorch中torch.nn.LSTM()参数详解;Pythorch中torch.nn.LSTM()参数详解;Pythorch中torch.nn.LSTM()参数详解;Pythorch中torch.nn.LSTM()参数详解;Pythorch中torch.nn.LSTM()参数详解;Pythorch中torch.nn.LSTM()参数详解;Pythorch中torch.nn.LSTM()参数详解
2022-04-27 20:07:24 101KB lstm 文档资料 综合资源 人工智能
1
目录 前言 一、torch.nn.BCELoss(weight=None, size_average=True) 二、nn.BCEWithLogitsLoss(weight=None, size_average=True) 三、torch.nn.MultiLabelSoftMarginLoss(weight=None, size_average=True) 四、总结 前言 最近使用Pytorch做多标签分类任务,遇到了一些损失函数的问题,因为经常会忘记(好记性不如烂笔头囧rz),都是现学现用,所以自己写了一些代码探究一下,并在此记录,如果以后还遇到其他损失函数,继续在此补充。 如果有兴趣,我建
2022-03-28 15:50:46 72KB c OR tor
1