破解验证码论文以及源代码图形分割 带粘连字符分割 SVM算法分析图形处理 这个本人研究验证码多年收集整理的资料已经研究成果,其中包含大量源代码,已经可以直接使用的软件。同时对比较难得带 带粘连字符分割问题的解决上做出了分析。
2023-05-12 19:37:05 34.33MB SVM 验证码 识别 图形处理
1
heed算法matlab代码MATLAB SVM-不推荐 具有梯度下降功能的SVM算法的旧式,简单,低级(未完成?)实现。 不包括内核。 不建议将此代码用于一般,直接的用法。 Matlab带有更有效的SVM实现(不使用梯度下降等)。 该代码对于理解SVM算法很有用,并且是创建您自己专门设计的(低级)SVM的基础。 免责声明:我相信还有实现(<->语法)错误,请注意。 版权:完全没有,请随意使用,更改和共享。
2023-04-20 20:23:09 4KB 系统开源
1
处理不平衡数据分类时,传统支持向量机技术(SVM)对少数类样本识别率较低。鉴于SVM+技术能利用样本间隐藏信息的启发,提出了多任务学习的不平衡SVM+算法(MTL-IC-SVM+)。MTL-IC-SVM+基于SVM+将不平衡数据的分类表示为一个多任务的学习问题,并从纠正分类面的偏移出发,分别赋予多数类和少数类样本不同的错分惩罚因子,且设置少数类样本到分类面的距离大于多数类样本到分类面的距离。UCI数据集上的实验结果表明,MTL-IC-SVM+在不平衡数据分类问题上具有较高的分类精度。
2023-03-04 20:08:56 1.03MB 不平衡数据 支持向量机 SVM+
1
以通俗简介的方式,从浅入深介绍SVM原理和代码流程 让你从此不再惧怕SVM 视频部分: 01_SVM之回顾梯度下降原理02_SVM之回顾有约束的最优化问题03_SVM之回顾有约束的最优化问题-KKT几何解释04_SVM之回顾有约束的最优化问题-KKT数学解释05_SVM之回顾距离公式和感知器模型06_SVM之感知器到SVM的引入07_SVM之线性可分时损失函数的表示08_SVM之线性可分时损失函数的求解-对w,b变量求偏导09_SVM之线性可分时损失函数的求解-对β变量求解.10_SVM之线性可分时算法整体流程11_SVM之线性可分时案例12_SVM之线性不可分时软间隔介绍13_SVM之线性不可分时软间隔优化目标14_SVM之线性不可分时软间隔算法整体流程15_SVM之线性不可分时数据映射高维解决不可分问题16_SVM之线性不可分时核函数引入17_SVM之线性不可分时核函数讲解18_SVM代码之线性可分时和Logistic回归比较19_SVM代码之基于鸢尾花数据多分类参数解释20_SVM代码之基于鸢尾花数据网格搜索选择参数21_SVM代码之不同分类器,核函数,C值的可视化比较2
2023-02-20 14:30:48 14.74MB 人工智能 算法 svm 机器学习
1
机器学习车牌识别+适用学生党+利用机器学习完成车牌识别+博客链接:https://blog.csdn.net/shooter7/article/details/115433365
2022-12-26 19:31:09 14.66MB 机器学习 课程设计
1
svm算法手写matlab代码机器学习 大家好, 我上传了我的机器学习在线课程作业,该课程由斯坦福大学的Andrew NJ教授教授。 所有代码都可以由MATLAB / Octave(4.4.0或更高版本)运行,并且为了提供有关每种练习的更多信息,需要准备一个文档文件。 最好先阅读一下并熟悉功能。 只需要运行以“ exNUM.m”命名的主函数,例如ex5.m 以下是每个练习的简要信息: HW1:线性回归。 在本练习中,我实现了线性回归方法,并看到了它在样本数据上的工作原理。 硬件2:逻辑回归。 在练习的第一部分,我建立了一个逻辑回归模型来预测学生是否被大学录取。 我使用线性决策边界对数据进行分类。 在练习的第二部分中,我实施了正则逻辑回归,以预测来自制造工厂的微芯片是否通过质量保证(QA)。 使用非线性决策边界和正则项。 HW3:神经网络的多类分类和实际使用。 在练习的第一部分中,我使用了逻辑回归的先前实现,并将其应用于“一对多”分类以识别手写数字(从0到9)。 最后,我获得了95%的训练集准确性。 在练习的下一部分中,我使用MPL神经网络库完成了先前的任务,令人惊讶的是准确性达到了97
2022-12-14 16:02:56 28.95MB 系统开源
1
传统的支持向量机(SVM)算法在数据不均衡的情况下,分类效果很不理想。为了提高SVM算法在不均衡数据集下的分类性能,提出随机下采样与SMOTE算法结合的不均衡分类方法。该方法首先利用随机下采样对多数类样本进行采样,去除样本中大量重叠的冗余样本,使得在减少数据的同时保留更多有用信息;而对少数类样本则是利用SMOTE算法进行过采样。实验部分将其应用在UCI数据集中并同其他采样算法比较,结果表明文中算法不但能有效提高SVM算法在不均衡数据中少数类的分类性能,而且总体分类性能也有所提高。
1
brainTumor:实现了垂体瘤,胶质瘤和脑膜瘤的图像分类,先进行CTMR图像的分类,采用HOG + SVM算法实现,再进行图像识别,采用CNN或多特征+ SVM实现,系统界面pyQT构建
2022-10-19 21:32:39 55.24MB 系统开源
1
基于SVM算法的手写数字识别系统的设计与实现代码大全.doc基于SVM算法的手写数字识别系统的设计与实现代码大全.doc基于SVM算法的手写数字识别系统的设计与实现代码大全.doc
2022-10-19 17:05:39 470KB 基于SVM算法的手写数字识别系统
1
svm算法手写matlab代码使用HOG功能和SVM的手写数字识别 在这个知识库中,我将提供一个MatLab和一个Python,用于使用HOG功能和SVM进行手写数字识别。 MatLab和Python代码的结构相同,分为三(3)个部分: 步骤1:资料准备步骤2:HOG功能计算步骤3:设置并运行SVM 步骤1:资料准备 在代码的第一部分,加载了MNIST数据集[1]。 数据集与标签一起分为训练集和测试。 训练和测试集中的总位数分别为60000和10000。 标签是十(10)位数字(0到9)。 在MatLab中,每个数字由784个元素的向量表示。 784个元素的向量将在代码中稍后调整大小,以形成28x28像素的图像。 在Python中,由于每个数字均由28x28像素的图像表示,因此跳过了调整大小步骤。 步骤2:HOG功能计算 从每个28x28像素图像中计算出定向梯度直方图(HOG)特征向量[2]。 每个向量由324个元素组成。 整个324个元素的特征向量将在以后用于训练支持向量机(SVM)。 步骤3:设置并运行SVM 支持向量机(SVM)[3]是我在本示例中使用的多类分类器,用于对手写数字
2022-09-25 12:17:59 29.09MB 系统开源
1