Keil MDK,也称MDK-ARM、Realview MDK、I-MDK、uVision4 等。Keil MDK是由三家国内代理商提供技术支持和相关服务。 MDK-ARM软件为基于Cortex-M、Cortex-R4、ARM7、ARM9处理器设备提供了一个完整的开发环境。 MDK-ARM专为微控制器应用而设计,不仅易学易用,而且功能强大,能够满足大多数苛刻的嵌入式应用。 MDK-ARM有四个可用版本,分别是MDK-Lite、MDK-Basic、MDK-Standard、MDK-Professional。所有版本均提供一个完善的C / C++开发环境,其中MDK-Professional还包含大量的中间库。 完美支持Cortex-M、Cortex-R4、ARM7和ARM9系列器件。 行业领先的ARM C/C++编译工具链 确定的Keil RTX ,小封装实时操作系统(带源码) μVision4 IDE集成开发环境,调试器和仿真环境 TCP/IP网络套件提供多种的协议和各种应用 提供带标准驱动类的USB 设备和USB 主机栈 为带图形用户接口的嵌入式系统提供了完善的GUI库支持
2025-08-22 17:18:27 887.01MB STM32 ARM
1
1、内容概要:使用STM32CubeMX生成源码,主芯片为STM32L431RCT6实现SPI Flash的读写存储,采用8MHz的外部晶振作为时钟源。 2、适用人群:适合想要入坑嵌入式的新手、适合学习STM32/ARM开发板的新手、适合STM32L431RCT6芯片的评估和验证等。 3、使用场景及目标:新人学习,STM32L431RCT6芯片评估和替换,开发验证等。 4、开发工具:STM32CubeMX+keil mdk+串口调试助手 5、其他说明(源码使用的开发板资源为): (1)开发板主芯片型号:STM32L431RCT6 (2)开发板主芯片封装:LQFP-64_10x10x05P (3)开发板主芯片内核:ARM-Cortex-M4 (4)开发板主芯片主频:80MHz (5)开发板主芯片Flash大小:256KB (6)开发板主芯片RAM大小:64KB
2025-08-22 10:05:12 42.75MB stm32 STM32CubeMX STM32L431RCT6
1
在本文中,我们将深入探讨如何使用STM32微控制器通过SPI接口挂载并操作FatFs文件系统,以便读写串行FLASH存储器。这个过程在STM32CubeMX配置环境中进行,具体涉及到的硬件组件是STM32F407VET6单片机和W25Q16串行FLASH芯片。 ### 1. STM32F407VET6 STM32F407VET6是STM32系列中的高性能MCU,基于ARM Cortex-M4内核,拥有浮点运算单元(FPU),适用于高精度控制和数据处理应用。它提供了丰富的外设接口,包括SPI,用于与各种外部设备通信。 ### 2. W25Q16串行FLASH芯片 W25Q16是一款容量为16MB的串行EPROM,支持SPI协议。它可以作为外部存储器,用于存储代码、数据或者文件系统,如FatFs。SPI接口使得连接简单且高效,适合小体积、低功耗的应用。 ### 3. SPI接口 SPI(Serial Peripheral Interface)是一种同步串行通信接口,由主机(Master)和从机(Slave)组成。在STM32中,SPI可以通过GPIO引脚配置,实现与W25Q16的通信。SPI模式包括主模式和从模式,这里我们使用主模式来控制W25Q16。 ### 4. STM32CubeMX配置 STM32CubeMX是STMicroelectronics提供的配置工具,用于初始化和配置STM32的外设。在配置过程中,我们需要设置以下几点: - 选择SPI接口,配置其工作模式、时钟频率、极性和相位。 - 配置GPIO引脚,将它们设置为SPI功能,并连接到W25Q16的对应引脚(SCK、MISO、MOSI和NSS)。 - 为GPIO引脚设置适当的上下拉电阻和速度。 - 关联中断,以便在传输完成后执行回调函数。 ### 5. FatFs文件系统 FatFs是ChaN软件公司开发的轻量级文件系统库,适用于嵌入式系统。它支持FAT12、FAT16和FAT32文件系统,可以挂载在各种类型的存储媒介上,包括我们的W25Q16。在STM32项目中集成FatFs,需要: - 配置FatFs源代码,指定扇区大小、总扇区数等参数。 - 初始化文件系统,创建、打开、读取和写入文件。 - 实现文件系统的错误处理和内存管理。 ### 6. 代码实现 编写驱动程序来实现SPI与W25Q16的交互,包括初始化、读写命令的发送。同时,编写FatFs相关的代码,完成文件系统的挂载、文件操作等。注意,FatFs通常需要一个块设备驱动,该驱动负责底层的数据传输,我们可以用SPI驱动来实现这个功能。 ### 7. 应用示例 创建一个简单的应用,例如读取或写入文本文件。挂载FatFs到W25Q16,然后创建或打开文件,读写数据,最后卸载文件系统。 ### 8. 调试与测试 使用调试工具如STM32CubeIDE或JLink进行代码调试,确保SPI通信和FatFs操作无误。可以使用如串口终端工具来查看日志输出,以跟踪程序执行状态。 总结,STM32通过SPI接口挂载FatFs读写串行FLASH涉及了STM32的外设配置、SPI通信、文件系统操作等多个环节。理解并掌握这些知识点对于开发基于STM32的存储应用至关重要。在实践中,我们需要不断调试优化,以确保系统的稳定性和效率。
2025-08-21 14:51:54 23.13MB stm32 w25q flash
1
STM32H7系列是意法半导体(STMicroelectronics)推出的高性能微控制器,基于ARM Cortex-M7内核,具有高速处理能力和低功耗特性。在嵌入式开发中,串口通信是一种常用的通信方式,而DMA(直接内存访问)技术可以极大地提高数据传输效率,减少CPU的负担。本文将详细介绍如何在STM32H7上实现串口通过DMA进行字符串输出的实验。 串口通信是嵌入式系统中设备间通信的基本手段之一,通常包括UART(通用异步收发传输器)和USART(通用同步/异步收发传输器)两种。STM32H7支持多种串口,包括UART和USART,它们可以配置为全双工、半双工或单工模式,并且支持DMA传输。 在STM32H7上配置串口DMA时,首先需要设置串口参数,如波特率、数据位、停止位和校验位等。这些参数可以通过HAL库中的`HAL_UART_Init()`函数来设定。接下来,要开启DMA服务,选择合适的DMA通道,并配置相应的传输模式。STM32H7有多个DMA实例(如DMA1、DMA2),每个实例包含多个通道,可以根据需求选择合适的通道进行串口通信。 配置DMA传输时,需要设置源地址(通常为发送缓冲区的地址)、目标地址(对应串口的发送FIFO地址)和传输长度。同时,还需设置传输完成中断或半传输中断,以便在数据发送完成后执行相应的回调函数。 在STM32H7的HAL库中,可以使用`HAL_UART_Transmit_DMA()`函数启动串口的DMA发送。该函数会启动指定串口的DMA传输,并在传输完成后自动触发回调函数。在回调函数中,可以进行一些后续处理,例如更新发送状态、清除发送标志等。 串口DMA字符串输出的实验步骤大致如下: 1. 初始化串口:配置串口参数,如波特率为9600,数据位8,停止位1,无校验。 2. 配置DMA:选择一个空闲的DMA通道,设置源地址为待发送字符串的首地址,目标地址为串口发送寄存器的地址,传输长度为字符串长度+1(包含结束符'\0')。 3. 注册回调函数:在DMA传输完成时,系统会自动调用预先注册的回调函数,此时可以更新发送状态或执行其他操作。 4. 启动DMA发送:调用`HAL_UART_Transmit_DMA()`函数,传入串口句柄和DMA传输结构体,开始发送字符串。 5. 在回调函数中处理:当DMA传输完成时,回调函数会被调用,可以在这里进行状态更新或启动新的发送任务。 为了确保实验的成功,还需要注意以下几点: - 确保串口和DMA的相关时钟已开启。 - 设置适当的DMA优先级,避免与其他DMA冲突。 - 检查并确保串口和DMA的中断线已被正确连接。 - 在DMA传输过程中,避免对发送缓冲区进行读写操作,以免数据错乱。 通过以上步骤,你可以在STM32H7上实现串口DMA的字符串输出功能,提升串口通信的效率,降低CPU占用率。在实际项目中,这个功能对于大量数据的发送,特别是在实时性要求较高的场景下,有着显著的优势。
2025-08-21 14:29:21 73.59MB stm32
1
在IT领域,Dalsa CamerLink采集卡是一种用于高分辨率图像捕获和处理的专业设备,广泛应用于工业自动化、机器视觉、科研以及医疗成像等多种行业。这个标题提及的"Dalsa CamerLink采集卡驱动"是确保该硬件在计算机上正确运行所必需的软件组件。 驱动程序是操作系统与硬件设备之间的桥梁,它负责翻译并执行来自操作系统的指令,使得硬件能够按照预期工作。Dalsa采集卡驱动主要功能包括初始化和配置硬件,传输数据,以及管理硬件资源,如内存和中断。驱动程序通常由设备制造商提供,以确保最佳兼容性和性能。 描述中的"包含驱动和现实软件"可能指的是除了驱动之外,还提供了一款配套的显示或分析软件。这类软件可能允许用户实时预览、调整图像参数、记录数据,甚至进行一些基本的图像处理,如滤波、阈值分割等。这样的工具对于调试系统、优化图像质量和实现特定应用至关重要。 标签中的"stm32 arm 嵌入式硬件 单片机"则提到了与Dalsa采集卡可能关联的一些技术领域。STM32是意法半导体(STMicroelectronics)推出的一系列基于ARM Cortex-M内核的微控制器,它们常用于嵌入式系统设计。在某些应用中,STM32可能会被用作控制Dalsa采集卡的主处理器,处理图像数据或者与其他系统通信。ARM是全球领先的半导体知识产权(IP)提供商,其Cortex-M系列内核为低功耗、高性能的微控制器设计提供了基础。嵌入式硬件和单片机则暗示了Dalsa采集卡可能被集成到更复杂的系统中,作为一个独立的、功能集中的处理单元。 至于压缩包子文件的文件名称列表只列出了"Dalsa 采集卡驱动",这可能是指压缩包内的所有文件都与Dalsa采集卡驱动有关,包括但不限于驱动安装程序、用户手册、配置工具、示例代码、库文件等。在实际使用时,用户需要按照提供的指南或者安装向导,将这些文件正确地部署到计算机系统中,以便驱动能够识别并控制Dalsa采集卡。 Dalsa CamerLink采集卡驱动及其配套软件是实现高效、高质量图像处理的关键组成部分,涉及到嵌入式系统设计、微控制器编程和图像处理等多个IT技术领域。理解并正确使用这些工具和组件,可以极大地提升系统性能,满足各种专业应用的需求。
2025-08-20 12:41:26 100.45MB stm32 arm 嵌入式硬件
1
STM32H750核心板是基于STMicroelectronics公司的高性能微控制器STM32H7系列的一款硬件平台,专门设计用于嵌入式应用。这款核心板的硬件PCB设计是其核心竞争力,它集成了STM32H750芯片以及其他必要的电子组件,为开发者提供了一个快速原型开发和系统验证的基础。 STM32H750是一款基于ARM Cortex-M7内核的32位微控制器,拥有强大的处理能力和高效的能源管理。它的主要特点包括高主频(最高可达480MHz),浮点运算单元(FPU),以及大量的片上存储资源,如闪存和SRAM,这使得它非常适合需要高性能计算和实时响应的项目。此外,STM32H750还支持多种外设接口,如CAN、Ethernet、USB、SPI、I2C和UART,为连接各种外围设备提供了便利。 在PCB设计方面,文件名如"Drill_PTH_Through_Via.DRL"、"Drill_PTH_Through.DRL"和"Drill_NPTH_Through.DRL"分别代表通孔、通孔过孔和非通孔过孔的钻孔文件。这些文件是PCB制造过程中的关键步骤,它们定义了电路板上的导电孔的位置和尺寸,用于连接多层电路板的内部和外部线路。这些孔可以容纳电子元件的引脚或作为接地和电源层之间的连接。 "Gerber_InnerLayer1.G1"和"Gerber_InnerLayer2.G2"是内层电路的光绘文件,用于指示PCB内部的铜迹线和焊盘布局。多层PCB设计允许更复杂的电路结构和更高的布线密度,同时保持良好的信号完整性和电磁兼容性。"Gerber_BottomLayer.GBL"表示底层电路的光绘文件,"Gerber_BottomSilkscreenLayer.GBO"是底层丝印层,通常用于标记元器件的标识和方向。"Gerber_BottomPasteMaskLayer.GBP"和"Gerber_BottomSolderMaskLayer.GBS"分别定义了底部锡膏掩模和底部阻焊层,这两个层对于表面贴装器件(SMD)的焊接至关重要,确保焊料只涂覆在指定的焊盘区域。 "Gerber_BoardOutlineLayer.GKO"是电路板外形轮廓的光绘文件,它定义了PCB的物理边界。这个边界决定了最终PCB的形状和尺寸,同时也会影响到PCB的安装和固定方式。 总结来说,STM32H750核心板的硬件PCB设计涉及了高性能微控制器的选择、多层PCB布局策略、电气连接的精确控制以及生产工艺的详细规格。这些设计考虑确保了核心板在功能、可靠性和可制造性方面的优秀表现,为开发者提供了一个强大且灵活的开发平台。
2025-08-19 17:30:59 294KB stm32 STM32H750
1
STM32是一款基于ARM Cortex-M内核的微控制器,广泛应用于嵌入式系统设计中。在许多项目中,为了实现数据存储和交换,开发者通常会使用SD(Secure Digital)卡,因为它们容量大、价格适中且易于操作。这篇内容将深入探讨STM32与SD卡的交互,以及如何编写和测试相关的程序。 STM32与SD卡的通信主要通过SPI(Serial Peripheral Interface)或SDIO(SD I/O)总线进行。SPI模式下,STM32作为主设备,而SD卡作为从设备。在SDIO模式下,SD卡可以提供更多的功能,如中断和多路复用,但需要更复杂的硬件支持。在这个例子中,我们更可能使用SPI模式,因为它更为简单且能满足基本需求。 1. **SPI配置**:在STM32中,首先需要配置相应的GPIO引脚作为SPI接口的SCK(时钟)、MISO(主设备输入,从设备输出)、MOSI(主设备输出,从设备输入)和NSS(片选信号)。然后,需要设置SPI初始化结构体,包括时钟分频、数据位宽、极性和相位等参数,并启动SPI外设。 2. **初始化SD卡**:在软件层面,我们需要执行SD卡的初始化流程。这包括发送CMD0(复位命令)、CMD8(版本检测命令)来确定SD卡的类型(SD1/SD2/SDHC/SDXC),接着发送ACMD41(操作条件查询)来获取卡的工作电压范围,最后发送CMD7(选择卡)来选定工作卡。 3. **读写操作**:初始化成功后,我们可以进行读写操作。写操作通常涉及CMD24(写单块)、CMD51(读状态)等命令,而读操作可能使用CMD17(读单块)或CMD18(连续读多块)。数据传输时,STM32的SPI外设将处理数据的发送和接收。 4. **错误处理**:在SD卡操作中,错误处理是必不可少的。例如,我们需要检查返回的应答位(R1/R2响应)以判断命令是否成功,以及在数据传输期间检测CRC错误。 5. **文件系统集成**:为了实现文件的创建、删除和读写,通常会引入FAT(File Allocation Table)文件系统。FATFS是一个轻量级的、可移植的文件系统,适用于资源有限的嵌入式系统。通过调用其提供的函数,如f_open、f_write、f_read等,STM32可以实现对SD卡上的文件操作。 6. **ALIENTEK MINISTM32 实验20 SD卡实验**:这个实验可能包含了上述所有步骤的详细指导和代码示例。实验文档通常会解释如何配置STM32开发板,连接SD卡,编写和编译程序,以及如何通过调试器运行和测试代码。此外,它还可能涵盖了常见问题的解决方案。 在学习和实践中,了解SD卡的协议标准、STM32的SPI接口操作以及如何整合文件系统至关重要。通过ALIENTEK MINISTM32的实验,开发者能够掌握实际应用中的SD卡驱动开发,为未来的嵌入式项目打下坚实基础。
2025-08-19 09:15:13 1.88MB
1
STM32F103C8T6单片机Printf打印函数工程代码,使用MicroLib来重定向printf。‌MicroLib是对标准C库进行了高度优化的库,‌通过重定义fputc函数到串口,‌可以实现printf函数的输出重定向。
2025-08-18 14:50:28 12.29MB stm32
1
STM32AD封装库是专为STM32微控制器设计的Altium Designer(AD)电路板设计资源。Altium Designer是一款强大的PCB设计软件,它提供了从原理图设计到PCB布局的一站式解决方案。STM32系列是意法半导体(STMicroelectronics)推出的基于ARM Cortex-M内核的微控制器,广泛应用在各种嵌入式系统中,如物联网设备、工业控制、消费电子等。 封装库是AD软件中必不可少的一部分,它包含了不同元件的实物形状和引脚分布信息,帮助设计师在原理图设计阶段正确选择和放置元件。STM32AD封装库包含了STM32系列各种型号的封装信息,比如LQFP、TSSOP、UFBGA等,这些都是STM32常见的封装形式,确保了在PCB设计过程中能够准确无误地布局和布线。 在使用STM32AD封装库时,首先需要在Altium Designer中导入库文件。库文件通常以*.lib或*.schlib为扩展名,包含了所有STM32微控制器的3D模型、引脚定义和电气特性。导入后,设计师可以在原理图编辑器中搜索并添加所需的STM32封装,这样就能在设计过程中直观地看到每个元件的位置和尺寸,从而避免因为封装选择错误导致的布线问题。 STM32系列微控制器的特点包括: 1. 高性能:基于ARM Cortex-M内核,运算速度高,能处理复杂的实时任务。 2. 低功耗:适合电池供电的便携式设备,具有多种低功耗模式。 3. 强大的外设集:如ADC、DAC、PWM、UART、SPI、I2C等,满足各种接口需求。 4. 多样化的封装和内存大小:提供不同引脚数量和存储容量的选择,以适应不同项目的需求。 5. 完善的开发工具链:包括HAL库、LL库、CubeMX配置工具,以及ST官方和第三方提供的IDE和调试工具。 在使用STM32AD封装库进行PCB设计时,需要注意以下几点: 1. 元件布局:根据系统需求和散热条件合理安排STM32和其他元件的位置。 2. 布线规划:注意电源线、地线的布设,尽可能减少信号干扰。 3. 电源和接地:确保电源和地平面的连续性,以降低噪声和提高稳定性。 4. 考虑电磁兼容性(EMC):合理设置滤波器,避免信号辐射超标。 5. 3D模型检查:利用AD的3D视图检查元件之间的空间关系,防止物理冲突。 STM32AD封装库为使用Altium Designer进行STM32微控制器的PCB设计提供了便利,使得设计者能够快速、准确地完成硬件开发,从而缩短产品上市时间,提高设计质量。
2025-08-18 10:53:06 37KB STM32
1
标题中的“ikbc g87机械键盘旧版固件”指的是IKBC品牌G87型号的机械键盘的早期版本固件。固件是控制设备硬件行为的软件,对于键盘而言,它包含了驱动键盘上每个按键功能、处理输入信号以及管理键盘上的LED灯效等核心逻辑。在本例中,旧版固件可能是因为某些特定功能或优化尚未加入,或者与新版固件相比存在一些已知问题。 描述中提到“新版的不能刷”,这可能意味着用户尝试更新到最新固件后遇到了问题,如“部分灯光不亮”和“按键与灯光不符”。这些问题通常源于新固件与旧硬件的兼容性问题,或者是新固件的编程错误。在键盘中,如果固件更新不当,可能会破坏灯光控制模块的代码,导致特定LED灯无法正常工作;另一方面,按键与灯光不符可能是固件中键码映射或灯效编程有误,使得按键操作与预期的灯光效果不一致。 标签中提到了“stm32 arm 嵌入式硬件 单片机”,这些是与键盘固件开发密切相关的技术。STM32是意法半导体(STMicroelectronics)生产的一系列基于ARM Cortex-M内核的微控制器,广泛用于嵌入式系统,如键盘等消费电子产品。它们具有高性能、低功耗的特点,适合驱动键盘这样的实时操作应用。ARM是处理器架构,其内核被许多微控制器和微处理器所采用,为硬件提供指令集。而“嵌入式硬件”和“单片机”则进一步表明这个键盘内部使用的是一种集成了CPU、内存和其他功能的单芯片系统,专门设计用于特定用途,如控制键盘操作。 在压缩包子文件的文件名称“ikbc_G87点彩A0下载工具20150916V1.0”中,“点彩A0”可能是指键盘的某个特定灯效模式或版本,而“下载工具”则表明这是一个用于升级固件的程序,用户可以通过这个工具将固件文件(通常为.hex或.bin格式)上传到键盘的存储器中。日期“20150916”可能表示该工具的发布日期,而“V1.0”是版本号,意味着这是该工具的第一个版本。 这个主题涉及了电子消费品的固件开发、微控制器的使用、以及与硬件更新相关的软件工具。如果你遇到上述问题并需要修复,你可能需要寻找适用于旧版固件的下载工具,或者寻找社区提供的解决方案,以恢复键盘的正常功能。同时,这也提醒我们在升级设备固件时,需谨慎操作,确保新固件与硬件兼容,避免不必要的问题。
2025-08-18 00:59:53 828KB stm32 arm 嵌入式硬件
1