在大数据时代,社交网络已成为互联网上人类交流与互动的重要体现。 识别网络中有影响力的传播者,在疾病爆发,病毒传播和舆论控制等各个领域都起着至关重要的作用。 基于这三种基本集中度测度,提出了一种应用偏好关系分析和随机游走技术的综合算法PARW-Rank,用于评估节点影响。 对于每个基本度量,分析网络中每个节点对之间的优先级关系,以构建部分优先级图(PPG)。 然后,通过结合针对三种基本度量的偏好关系来生成综合偏好图(CPG)。 最后,通过在CPG上进行随机游走来确定节点的排名。 此外,使用五个公共社交网络进行比较分析。 实验结果表明,与现有的单一中心测度方法相比,我们的PARW-Rank算法可以实现更高的精度和更好的稳定性。
2021-10-25 09:11:28 2.23MB social network influential spreaders
1