hbase-spark-1.0.1_spark-3.0.1_2.jar
2025-11-27 16:23:40 496KB
1
基于Hadoop+Spark招聘推荐可视化系统 大数据项目 毕业设计(源码下载) 基于Hadoop+Spark的招聘推荐可视化系统是一种利用Hadoop和Spark等大数据处理技术,实现招聘推荐和可视化展示的应用系统。以下是该系统的主要介绍: 数据采集:系统通过各种渠道(如招聘网站、社交媒体等)获取大量的招聘相关数据,包括职位信息、公司信息、求职者信息等。这些数据以结构化或半结构化形式存在。 数据存储与处理:系统利用Hadoop分布式文件系统(HDFS)存储采集到的招聘数据,并使用Hadoop生态圈中的工具(如Hive、HBase等)进行数据处理和管理。Spark作为数据处理引擎,提供高性能的批处理和实时计算能力,对招聘数据进行清洗、转换和特征提取等操作。 招聘推荐:系统利用Spark的机器学习库(如MLlib)构建候选模型,通过对求职者的个人资料、工作经历、技能等特征进行分析,匹配合适的职位和公司。系统可以根据用户的偏好和需求,向其推荐最相关的招聘信息。 可视化展示:系统利用可视化工具(如matplotlib、Plotly等)将招聘数据以各种图表、图形等形式可视化展示。例如,
2025-11-23 18:25:05 191.07MB hadoop spark 毕业设计
1
基于大数据技术构建的地铁客流智能分析系统——高效管理与决策支持平台,项目21:基于大数据技术的地铁客流量分析系统 简介: 本项目旨在利用Hadoop和Spark大数据技术,对海量地铁客流量数据进行高效管理和深入分析。 通过构建数据仓库,实现用户登录注册功能,并提供地铁站点数量、站点人数、闸机总客流量等实时查询服务。 项目将进行站点乘客数量漏斗分析,以识别客流流失环节;同时,分析不同站点及线路的流量峰值和占比,为地铁运营提供决策支持。 最终,通过可视化技术展示统计分析结果,为管理者提供直观、易懂的数据展现形式,助力提升地铁运营效率和服务质量。 hadoop+spark+mysql+mybatis+springboot+vue+echarts+hmtl+css ,基于所给信息,提取的核心关键词为: 大数据技术; 地铁客流量分析; Hadoop; Spark; 数据仓库; 实时查询服务; 站点乘客数量漏斗分析; 流量峰值分析; 决策支持; 可视化技术。 关键词以分号分隔为:大数据技术; 地铁客流量分析; Hadoop; Spark; 数据仓库; 实时查询服务; 站点乘客数量漏斗分析;
2025-11-18 23:02:15 495KB
1
标题SpringBoot与Spark结合的西南天气数据分析与应用研究AI更换标题第1章引言阐述SpringBoot与Spark结合在西南天气数据分析中的研究背景、意义及国内外现状。1.1研究背景与意义介绍西南地区天气数据的特殊性及分析的重要性。1.2国内外研究现状概述国内外在天气数据分析与应用方面的研究进展。1.3研究方法与创新点介绍SpringBoot与Spark结合的方法,并说明研究的创新之处。第2章相关理论总结和评述SpringBoot、Spark及天气数据分析的相关理论。2.1SpringBoot框架理论介绍SpringBoot框架的特点、优势及在数据分析中的应用。2.2Spark计算框架理论阐述Spark的分布式计算原理、优势及在数据处理中的应用。2.3天气数据分析理论介绍天气数据分析的基本方法、常用模型及评价指标。第3章系统设计与实现详细描述基于SpringBoot与Spark的西南天气数据分析系统的设计方案和实现过程。3.1系统架构设计介绍系统的整体架构、模块划分及模块间交互方式。3.2数据采集与预处理阐述天气数据的采集方法、数据清洗及预处理流程。3.3数据分析模型构建介绍基于Spark的天气数据分析模型的构建过程及参数设置。3.4系统实现与部署系统的开发环境、实现细节及部署方式。第4章实验与分析对基于SpringBoot与Spark的西南天气数据分析系统进行实验验证和性能分析。4.1实验环境与数据集介绍实验所采用的环境、数据集及评估指标。4.2实验方法与步骤给出实验的具体方法和步骤,包括数据加载、模型训练和测试等。4.3实验结果与分析从准确性、效率等指标对实验结果进行详细分析,并对比其他方法。第5章应用与推广介绍系统在西南天气数据分析中的应用场景及推广价值。5.1应用场景分析分析系统在天气预报、灾害预警等方面的应用场景。5.2推广价值评估评估系统在其他地区或
2025-11-18 22:46:24 10.08MB springboot spark vue mysql
1
标题SpringBoot与Spark融合的西南天气数据分析研究AI更换标题第1章引言阐述SpringBoot结合Spark进行西南天气数据分析的研究背景、意义及现状,并介绍论文方法和创新点。1.1研究背景与意义分析西南地区天气数据分析的重要性及现有研究不足。1.2国内外研究现状综述国内外基于大数据技术的天气数据分析研究进展。1.3研究方法以及创新点简述SpringBoot与Spark结合的分析方法及论文创新点。第2章相关理论总结SpringBoot、Spark及天气数据分析相关理论,确立研究的理论基础。2.1SpringBoot框架理论介绍SpringBoot框架特点、优势及在数据分析中的应用。2.2Spark大数据处理理论阐述Spark核心概念、RDD及数据处理流程。2.3天气数据分析理论概述天气数据分析方法、模型及评估指标。第3章基于SpringBoot与Spark的西南天气数据分析系统设计详细介绍系统的架构设计、数据收集与处理方案。3.1系统架构设计系统总体架构、模块划分及交互方式。3.2数据收集方案介绍西南天气数据的来源、收集方法及预处理步骤。3.3数据处理流程阐述使用Spark进行天气数据处理的具体流程。第4章实验与分析呈现基于SpringBoot与Spark的西南天气数据分析实验结果,包括图表和文本解释。4.1实验环境与数据介绍实验所使用的软硬件环境及实验数据。4.2实验方法与步骤详细描述实验的具体方法和步骤,包括数据处理、模型训练等。4.3实验结果与分析通过图表和文本解释,分析实验结果,验证系统有效性。第5章系统应用与效果评估探讨系统在西南天气数据分析中的应用,并评估其效果。5.1系统应用场景介绍系统在西南地区天气预测、灾害预警等方面的应用。5.2效果评估方法阐述系统效果评估的指标和方法。5.3评估结果与分析分析系统应用效果,提出改进建议。第6章结论与展望总结
2025-11-18 22:46:06 10MB springboot vue mysql spark
1
标题Django与Spark融合的温布尔登赛事数据分析平台研究AI更换标题第1章引言阐述温布尔登赛事数据分析的背景与意义,分析国内外研究现状,提出论文方法及创新点。1.1研究背景与意义介绍温布尔登赛事影响力及数据分析对赛事管理的重要性。1.2国内外研究现状概述国内外在体育赛事数据分析及可视化方面的研究进展。1.3研究方法与创新点说明采用Django与Spark结合的方法,及平台设计实现的创新之处。第2章相关理论总结Django框架、Spark大数据处理及数据可视化相关理论。2.1Django框架理论介绍Django框架特点、MVC架构及在Web开发中的应用。2.2Spark大数据处理理论阐述Spark的核心概念、RDD模型及大数据处理能力。2.3数据可视化理论讨论数据可视化的重要性、常见可视化工具及技术。第3章平台设计详细介绍基于Django与Spark的温布尔登赛事数据分析可视化平台的设计方案。3.1平台架构设计给出平台的整体架构,包括前端、后端及数据处理层。3.2数据库设计设计平台所需的数据库结构,包括赛事数据、用户数据等。3.3功能模块设计详细规划平台的数据采集、处理、分析及可视化等功能模块。第4章平台实现阐述平台的具体实现过程,包括Django与Spark的集成、数据处理流程等。4.1Django与Spark集成介绍如何在Django项目中集成Spark进行大数据处理。4.2数据处理流程实现详细说明数据从采集到处理再到可视化的完整流程。4.3平台界面与交互设计展示平台的用户界面设计,以及用户与平台的交互方式。第5章实验与分析对平台进行实验验证,分析平台的性能及数据可视化效果。5.1实验环境与数据集介绍实验所采用的环境、数据集及评估指标。5.2实验方法与步骤给出实验的具体方法和步骤,包括数据预处理、模型训练等。5.3实验结果与分析分析实验结果,评估平台的性能及数据可视
2025-10-16 21:19:14 5.38MB python django vue mysql
1
Hadoop、Hive、Spark 实验 本实验报告主要介绍了 Hadoop、Hive、Spark 等大数据技术的应用和实践。实验中,学生需要使用 Hadoop、Hive、Spark 等环境,完成大数据开发和分析,并对拍卖成功率进行预测。 知识点: 1. Hadoop 伪分布安装部署:在 Centos 7.5 系统上安装 Hadoop 2.7.3,并配置免密钥登陆和主机名映射。 2. Hadoop 完全分布式安装部署:在多台机器上安装 Hadoop,实现分布式存储和计算。 3. Hadoop 常用命令:学习 Hadoop 的基本命令,例如启动 Hadoop 集群、查看相关进程、查看 HDFS 上文件目录、递归列出目录及文件、删除文件等。 4. HDFS:学习 HDFS 的基本概念和 API 使用,例如使用 IOUtils 方式读取文件、文件创建与写入等。 5. MapReduce 编程:学习 MapReduce 编程模型,例如单词计数、数据过滤及保存等。 6. Hive 环境搭建:学习 Hive 的基本概念和使用,例如创建 Hive 表、加载数据、执行查询等。 7. Spark 环境搭建:学习 Spark 的基本概念和使用,例如创建 Spark 程序、加载数据、执行查询等。 8. 逻辑回归和决策树预测:学习逻辑回归和决策树算法,用于预测拍卖成功率。 实验设备和环境: * 虚拟机数量:1 * 系统版本:Centos 7.5 * Hadoop 版本:Apache Hadoop 2.7.3 * Hive 版本:未指定 * Spark 版本:未指定 实验步骤: 1. 安装 Javajdk 1.8.0_131,并测试版本 2. 增加主机名和 ip 的映射 3. 配置免密钥登陆 4. 启动 Hadoop 集群,并查看节点(进程) 5. 运行 PI 实例,并查看结果 6. 实现 Hadoop 伪分布安装部署 7. 实现 Hadoop 完全分布式安装部署 8. 实现 HDFS 的基本操作,例如文件创建与写入、文件上传下载等 9. 实现 MapReduce 编程,例如单词计数、数据过滤及保存等 10. 实现 Hive 环境搭建和使用 11. 实现 Spark 环境搭建和使用 12. 实现逻辑回归和决策树预测拍卖成功率 本实验报告介绍了 Hadoop、Hive、Spark 等大数据技术的应用和实践,涉及到大数据开发、存储、计算和分析等多个方面。
2025-09-25 14:09:25 5.43MB hive hadoop spark 数据仓库
1
《Learning Spark》是关于Apache Spark的入门书籍,它为读者提供了一个非常全面的指南来了解并掌握Spark这一强大的大数据处理框架。本书涵盖了Spark的核心概念,包括基础、数据处理、与存储系统的交互以及如何在Spark中进行数据分析。下面,我们将详细介绍书中提到的知识点。 Apache Spark是一个开源的集群计算系统,它提供了比传统Hadoop MapReduce更快的数据处理速度,并且在内存计算方面表现得更加优异。Spark的设计初衷是为了简化大数据的分析工作,其核心特性包括分布式数据集(RDD)、对实时数据流的处理(Spark Streaming)、大规模机器学习算法(MLlib)以及图计算(GraphX)等。 Spark的统一堆栈(A Unified Stack)包括以下几个组件: 1. Spark Core:提供了Spark的基本功能,包括任务调度、内存管理以及故障恢复等,其它的组件都是建立在Spark Core之上的。 2. Spark SQL:允许用户执行SQL查询,同时支持各种数据源,是处理结构化和半结构化数据的重要组件。 3. Spark Streaming:对实时数据流进行计算处理,提供了与核心Spark API类似的高级API。 4. MLlib:提供了一系列机器学习算法和工具,用于构建预测模型。 5. GraphX:是Apache Spark中用于图计算的库,它提供了操作图和执行图计算的API。 书中提到,Spark的使用者众多,包括一些大型公司和研究机构,它们利用Spark进行数据科学任务和数据处理应用。关于数据科学任务,Spark能够帮助用户进行数据探索、统计分析、特征提取等。数据处理应用方面,Spark则擅长执行ETL(提取、转换、加载)操作,数据仓库查询和日志分析等。 此外,书中还回顾了Spark的发展史,提到了Spark的版本和发布历史,以及它与Hadoop的关系。Hadoop曾经是大数据处理的事实标准,但Spark在性能上有所超越,并且能够更好地利用内存资源。 在如何开始使用Spark的章节中,作者指导读者如何下载Spark,熟悉其Python和Scala的交互式shell,以及核心概念。书中还介绍了如何初始化SparkContext,这是与Spark集群进行交互的入口点。 关于RDD编程,该书详细解释了RDD是什么以及如何创建RDD,并介绍了转换(Transformations)和行动(Actions)操作,这些都是编程Spark时的基础概念。懒惰评估(Lazy Evaluation)是Spark的一个关键特性,它意味着Spark不会立即执行计算,而是构建一个计算图,只在需要最终结果时才执行计算。此外,本书还介绍如何将函数传递给Spark,并分别针对Python、Scala和Java语言给出了示例。 处理键值对(Key-Value Pairs)的章节揭示了在Spark中处理分布式的键值对数据的重要性。在这一章节中,作者阐述了如何创建和操作Pair RDDs,包括转换操作、聚合和分组数据、执行连接(Joins)、排序和分区等。此外,也讨论了自定义分区器(Custom Partitioners)的作用以及它们如何影响数据的分布和处理性能。 加载和保存数据的章节解释了Spark支持的各种数据格式,例如文本文件、JSON、CSV/TSV、序列文件和对象文件等。Spark能够读写Hadoop支持的多种文件系统,比如HDFS和本地文件系统。书中还涉及了压缩的使用、支持各种数据库的读写操作,例如Elasticsearch、MongoDB、Cassandra、HBase,以及通过Java Database Connectivity (JDBC) 连接关系型数据库。这些内容为读者提供了把Spark用于生产环境中数据处理的全景视图。
2025-09-01 11:04:06 1.45MB Learning Spark
1
Spark 3.3.3是Apache Spark的一个重要版本,它是一个快速、通用且可扩展的大数据处理框架。这个版本特别针对Hadoop 3.x进行了优化,使得它能够充分利用Hadoop生态系统中的新特性和性能改进。在本文中,我们将深入探讨Spark 3.3.3与Hadoop 3.x的集成,以及它们在大数据处理领域的关键知识点。 Spark的核心特性包括其内存计算能力,这极大地提高了数据处理速度。Spark的RDD(弹性分布式数据集)是其基础抽象,它提供了一种高效的、容错的数据存储和计算模型。在Spark 3.3.3中,对RDD的优化和性能提升使得大规模数据处理更加高效。 Spark SQL是Spark处理结构化数据的重要组件,它允许用户使用SQL查询语言进行数据处理,并与多种数据源如Hive、Parquet、JSON等无缝集成。在Spark 3.3.3中,SQL性能得到了显著提升,查询计划优化器也更加智能,能生成更高效的执行计划。 再者,Spark Streaming提供了实时数据处理能力,它可以处理来自各种数据源的连续数据流。在Spark 3.3.3中,对DStream(离散化流)的处理更加强大,支持更多的窗口操作和复杂的流处理逻辑,增强了系统的可靠性和容错性。 此外,MLlib是Spark的机器学习库,包含多种机器学习算法,如分类、回归、聚类和协同过滤等。在Spark 3.3.3中,MLlib进一步完善了模型解释性,优化了算法性能,并增加了对最新机器学习研究的支持。 与Hadoop 3.x的集成是Spark 3.3.3的一大亮点。Hadoop 3.x引入了YARN(Yet Another Resource Negotiator)资源调度器的增强,提供了更细粒度的资源管理,提升了集群的利用率。Spark可以直接在YARN上运行,利用其资源管理功能。同时,Hadoop 3.x的HDFS(Hadoop Distributed File System)增强了存储能力,如支持大文件块和多命名空间,这对大数据处理的性能和灵活性都有积极影响。 在Spark 3.3.3中,对Hadoop 3.x的支持还包括与HDFS的兼容性增强,如支持HDFS的Erasure Coding,这是一种提高数据冗余和恢复效率的方法。另外,Spark还能够利用Hadoop 3.x的MapReduce改进,如更高效的 Shuffle 操作,从而提升整体处理性能。 总结来说,Spark 3.3.3与Hadoop 3.x的结合提供了强大的大数据处理平台,涵盖了数据处理、实时流处理、机器学习和存储管理等多个方面。这个版本的优化和新特性使得开发者能够更高效地处理大规模数据,同时享受到Hadoop 3.x带来的集群管理和存储性能提升。对于需要处理海量数据的企业和研究机构而言,Spark 3.3.3是一个理想的工具选择。
2025-08-18 05:26:50 285.56MB spark Hadoop
1
《Learning Spark》与《图解Spark核心技术与案例实战》两本书是深入了解和学习Apache Spark的重要资源,它们分别从英文和中文角度提供了丰富的Spark知识。Spark作为一个分布式计算框架,以其高效、易用和多模态处理能力在大数据处理领域备受推崇。 《Learning Spark》是Spark的官方入门教材,由Databricks的团队编写,详细介绍了Spark的核心概念和技术。这本书分为多个部分,首先讲解了Spark的基础,包括Spark架构、RDD(弹性分布式数据集)以及Spark Shell的使用。接着,深入讨论了DataFrame和Dataset API,这是Spark 2.x引入的重要特性,使得数据处理更加高效且类型安全。此外,书中还涵盖了Spark SQL、Spark Streaming、MLlib(机器学习库)和GraphX(图处理)等模块,为读者提供了一个全面的Spark视角。 《图解Spark核心技术与案例实战》则是面向中文读者的Spark指南,通过图形化的方式和实际案例,让读者更直观地理解Spark的工作原理和应用。书中的案例涵盖了数据处理的各个阶段,如数据加载、转换、聚合以及结果输出。书中详细解析了Spark作业的执行流程,包括Stage划分、Task调度以及 Shuffle过程,这些是理解Spark性能优化的关键。此外,书中还涉及了Spark与Hadoop、Hive等其他大数据组件的集成,以及如何在实际项目中运用Spark进行数据挖掘和分析。 Spark的核心技术主要包括以下几个方面: 1. RDD:作为Spark的基本数据抽象,RDD提供了容错性和并行计算的能力。通过创建和操作RDD,用户可以实现分布式计算任务。 2. DataFrame和Dataset:这两种API是Spark SQL的一部分,提供了更高级别的抽象,使得数据处理更加方便,同时也支持SQL查询。 3. Spark SQL:Spark SQL将SQL与Spark的编程模型融合,允许用户通过SQL语句或DataFrame/Dataset API来处理结构化数据。 4. Spark Streaming:Spark Streaming提供了一种处理实时数据流的方法,它将数据流划分为微批次,然后使用Spark的核心API进行处理。 5. MLlib:Spark的机器学习库,提供了各种常见的机器学习算法,如分类、回归、聚类和协同过滤,并支持管道和模型选择。 6. GraphX:Spark的图处理库,用于处理和分析图形数据,支持图算法的实现。 7. 性能优化:Spark支持动态资源调度、宽依赖优化、Shuffle管理、数据本地性等策略,以提高计算效率。 通过这两本书的学习,读者可以系统地掌握Spark的核心概念和技术,了解如何在实践中应用Spark解决大数据问题,无论是数据分析、实时流处理还是机器学习,都能找到相应的解决方案。同时,对于想要深入研究Spark的开发者,这两本书也提供了丰富的参考资料和实践指导。
2025-07-24 16:41:44 56.27MB spark 核心技术 案例实战
1