翻译SSD论文(Single Shot MultiBox Detector) ,转载仅作交流~
2023-04-19 10:29:50 801KB SSD 中文
1
元转移学习,少量学习 该存储库包含针对论文的TensorFlow和PyTorch实现,作者孙倩*,*,( )和( (* =相等贡献)。 如果您对此存储库或相关文章有任何疑问,请随时或。 检查快照分类排行榜。 概括 介绍 入门 数据集 表现 引文 致谢 介绍 已经提出将元学习作为解决具有挑战性的一次性学习设置的框架。 关键思想是利用大量类似的少量任务,以学习如何使基础学习者适应新的任务,对于该新任务,只有少量标记的样本可用。 由于深度神经网络(DNN)仅仅使用少数几个样本就趋于过拟合,因此元学习通常使用浅层神经网络(SNN),因此限制了其有效性。 在本文中,我们提出了一种称为元转移学习(MTL)的新颖的少拍学习方法,该方法可以学习将深度神经网络适应于少拍学习任务。 具体来说,meta是指训练多个任务,并且通过学习每个任务的DNN权重的缩放和移位功能来实现传递。 我们在两个具有挑
1
在Tensorflow中使用记忆增强神经网络进行一枪学习。 更新:添加了对Tensorflow v1 *的支持。 本文采用记忆增强神经网络的一站式学习的Tensorflow实现。 目前的执行进度: 实用功能: 图像处理器 指标(精度) 相似度(余弦相似度) LSTM控制器和存储单元 批处理发生器 Omniglot测试人员代码 通过自动编码器进行无监督功能学习 牛/新出生识别 基准数据集是。 所有数据集都应放置在文件夹中。 亚当·桑托罗,谢尔盖Bartunov,马修Botvinick,大安Wierstra,蒂莫西Lillicrap,一次性学习与记忆,增强神经网络,[ ]
1
CVPR2021纸的代码 零镜头实例分割 规范要求 的Python:python3.7 英伟达GPU pytorch1.1.0 GCC> = 5.4 NCCL 2 require.txt中的其他python库 安装 conda create -n zsi python=3.7 -y conda activate zsi conda install pytorch=1.1.0 torchvision=0.3.0 cudatoolkit=10.0 -c pytorch pip install cython && pip --no-cache-dir install -r requirements.txt python setup.py develop 数据准备 从下载zsi的训练和测试注解文件,将所有json标签文件放入 data/coco/annotations/ 下载MS
2022-11-24 20:21:48 6.6MB Python
1
Bottle Shot (iPhone - Android) unity 源码
2022-10-28 13:07:41 35.89MB unity
射酒瓶Bottle Shot unity源码 .rar
2022-10-28 09:07:11 69.36MB unity
自己写的ping代码实现,可以实现one-shot和continue两种模式,非常好用
2022-10-15 13:03:32 125KB 网络通信
1
提出了一种新的自支持匹配策略来缓解这一问题,该策略使用查询原型来匹配查询特征,其中查询原型是从高置信度查询预测中收集的。该策略可以有效地捕获查询对象的一致底层特征,从而匹配查询特征。我们还提出了自适应自支持背景原型生成模块和自支持损失,以进一步促进自支持匹配过程。我们的自支持网络大大提高了原型质量,受益于更强的主干和更多支持,并在多个数据集上实现了SOTA。
2022-09-23 21:05:32 4.91MB
1
提出了一种新的、直截了当的见解来缓解这个问题。具体来说,我们在传统的FSS模型(meta learner)上应用了一个额外的分支(基本学习者),以明确识别基本类,即不需要分割的区域。然后,将这两个学习器并行输出的粗略结果进行自适应集成,以获得精确的分割预测。考虑到元学习者的敏感性,我们进一步引入调整因子来估计输入图像对之间的场景差异,以便于模型集成预测。PASCAL-5i和 COCO-20i验证性能大幅提升,令人惊讶的是,我们的多功能方案即使有两个普通的学习者,也创造了最先进的水平。此外,鉴于所提出方法的独特性,我们还将其扩展到更现实但更具挑战性的环境,即广义FSS,其中需要确定基类和新类的像素。
2022-09-23 21:05:30 4.72MB 小样本分割 文献阅读分享 深度学习
1
提出了一种简单而有效的自我引导学习方法,即挖掘丢失的关键信息。具体来说,通过对标注的支持图像进行初始预测,将覆盖和未覆盖的前景区域分别用掩码GAP编码为主支持向量和辅助支持向量。通过主支持向量和辅助支持向量的融合,对查询图像获得了较好的分割性能。在我们的1 shot 分割自我引导模块的启发下,我们提出了一个多次分割的交叉引导模块,其中最终混合使用来自多个带注释的样本的预测,高质量的支持向量贡献更多,反之亦然。该模块改进了推理阶段的最终预测,无需再训练。大量实验表明,我们的方法在pascal -5i和coco -20i数据集上都实现了新的最先进的性能。
2022-09-23 21:05:29 3.72MB 小样本分割 文献阅读分享 深度学习
1