时间序列预测调查 该项目的目的是使用新颖的机器学习方法改进对时间序列的预测,并将其向前推进几步,以便更好地预测异常值,例如资产负债表上的异常。 安装 将此存储库克隆或下载到您的计算机。 安装Jupyter Lab( pip install jupyterlab )。 cd到存储库的目录。 使用以下命令启动Jupyter Lab: jupyter lab 。 笔记本可以在Jupyter Lab窗口中打开并运行。 所需的数据很轻,因此已经包含在此存储库中。
2024-03-29 17:34:11 9.59MB JupyterNotebook
1
cnn-bilstm-attention-time-series-prediction_keras-master
2022-10-30 18:02:39 498KB cnn keras 文档资料 python
1
cnn-bilstm-attention-time-series-prediction_keras-mastercnn-bilstm-attention-time-series-prediction_keras-mastercnn-bilstm-attention-time-series-prediction_keras-mastercnn-bilstm-attention-time-series-prediction_keras-mastercnn-bilstm-attention-time-series-prediction_keras-mastercnn-bilstm-attention-time-series-prediction_keras-mastercnn-bilstm-attention-time-series-prediction_keras-mastercnn-bilstm-attention-time-series-prediction_keras-mastercnn-bilstm-attention-time-series-prediction_keras-ma
2022-06-02 11:05:01 501KB cnn keras 文档资料 python
2月22日打卡学习记录 一开始把Aliyun和Docker账号搞混了,出了很多模型奇妙的bug最后还是好不容易在最后关头跑通了。。太难了我的天。 通过pycharm终端构建图像 将图像推送到我的注册表 成功记录得分:-16 2月26日打卡学习记录 因为数据很多,所以我们使用tsfresh来生成功能,只是一个自动的功能工程,然后套入了模型。 后续思路是使用transformer来进行预测。
本代码是使用lstm进行时间序列预测,能够很清晰的说明如何使用lstm(Time series prediction using LSTM)
2021-12-20 18:03:23 289KB LSTM
在这篇提交中,我实现了一个径向基函数 (RBF) 神经网络,用于预测混沌时间序列预测。 特别是设计了一个 Mackey Glass 时间序列预测模型,该模型可以使用过去的时间样本预测几步的值。 RBF 是使用传统的梯度下降学习算法训练的,核函数是高斯核,其中心和散布是从 K-mean 聚类算法获得的。
2021-11-02 19:19:14 657KB matlab
1
tensorflow下用LSTM网络进行时间序列预测,实时多变量预测和对于未来数据的单变量预测,代码中做了详尽的中文解释,并对一些参数进行了注释和说明。
2021-10-31 16:19:04 6.58MB LSTM 时间序列 Tensorflow 机器学习
1
描述 根据论文,我有Keras的开放源代码XinLi,LidongBing,WaiLam and BeiShi. A Dual-Stage Attention-Based Recurrent Neural Network for Time Series Prediction layer_definition 这部分包括编写自己的图层。 双重注意 这部分包括数据的预处理,模型的构建和模型的训练。 数据 从( )下载
2021-10-12 11:50:26 6.37MB Python
1
EEMD-LSTM-DO-prediction EEMD(集合经验模态分解)、LSTM(长短时记忆网络)、time series prediction(时间序列预测)、DO(dissolved oxygen,溶解氧) 本文提出了一种改进后的 LSTM 模型,即 EEMD-LSTM 模型。该方法在获取原始 溶解氧时间序列后并预处理后,经过 EEMD 分解为若干子序列,并对其分别建立 LSTM 预测模型,叠加个各个模型的预测结果即可获取最终的预测结果。在获取江苏无锡长江 水质实时监测站溶解氧数据后展开实验,选取原始 LSTM 模型、改进后的 BP 模型、原 始 BP 模型作为对比,实验表明,EEMD-LSTM 模型具有最小的预测误差,更好的模拟 溶解氧时间序列的走势,具有最好的预测效果。 This paper presents an improved LSTM model, the EEMD-
2021-07-27 15:08:08 31.99MB prediction lstm time-series-prediction eemd
1
narx的matlab代码使用NARX进行时间序列预测 该项目使用模型对从公交车上的驾驶循环测试获得的数据进行时间序列预测。 从同一条总线总共获得了25个数据系列(),对应于三个不同的数据系列。 在每个数据集中,对四个变量进行了实验量化:发动机扭矩,发动机转速,进气温度和排烟温度。 排气温度作为输出变量,其余3个作为NARX的输入。 图1:贝尔法斯特街头的公交车() 存储库中包含五个不同的MATLAB脚本: 代码说明 数据预处理 数据预处理在中进行。 修改数据以创建单个训练数据集,其中包含25个时间序列中的22个。 训练中不涉及三个数据集,每个对应的驾驶循环一个,而是用于评估NARX的泛化能力。 图2:使用的25种排烟温度时间序列 训练 包括两个用于ANN训练的不同脚本。 训练具有10个隐藏神经元和2个输入延迟的NARX。此网络架构是通过反复试验确定的。 训练数据的典型划分为训练(70%),验证(15%)和测试(%)子集,以防止过拟合。 循环包含相同的训练过程。 训练了许多模型,量化了它们在3个测试数据集上的性能,但仅保存了“最佳”模型。 预言 包括两种预测脚本变体。 第一个()对树测
2021-07-24 15:44:14 1.37MB 系统开源
1