**情感分析:NLP项目的深度探索** 在当今大数据时代,自然语言处理(NLP)已经成为一个不可或缺的技术领域,尤其在信息提取、文本分类和情感分析等应用中。本项目聚焦于“情感分析”,这是一种NLP任务,旨在识别和提取文本中的主观信息,特别是对情感、情绪或态度的判断。它在社交媒体监控、产品评价分析、舆情分析等多个场景中发挥着重要作用。 **Jupyter Notebook:数据科学的首选工具** 项目中使用的Jupyter Notebook是数据科学家和研究人员广泛采用的交互式环境。它将代码、文档、图像和可视化集成在一个易于理解和分享的文档中。通过Jupyter Notebook,我们可以编写Python代码,直接运行并观察结果,非常适合进行数据分析、模型训练和结果展示。 **情感分析的基本步骤** 1. **预处理**:情感分析的第一步通常涉及文本清理,包括去除停用词(如“的”、“和”)、标点符号,转换为小写,以及词干提取或词形还原。此外,还需要处理特殊字符和URL,以消除噪声。 2. **词汇资源**:情感词典是情感分析的重要组成部分,例如AFINN、SentiWordNet等。它们提供了单词的情感极性和强度信息,帮助确定文本的情感倾向。 3. **特征提取**:将文本转化为计算机可理解的形式是关键。常用方法包括词袋模型(Bag-of-Words)、TF-IDF和词嵌入(如Word2Vec或GloVe)。这些技术能捕获词语之间的语义关系。 4. **模型选择**:常见的机器学习算法如朴素贝叶斯、支持向量机(SVM)、逻辑回归或深度学习模型(如LSTM、BERT)可用于构建情感分析模型。每个模型都有其优势和适用场景,需要根据数据特性和需求来选择。 5. **训练与评估**:利用训练集对模型进行训练,并使用交叉验证或验证集来调整模型参数。评估指标包括准确率、召回率、F1分数和ROC曲线等。 6. **模型优化**:基于评估结果,可能需要进行特征工程、超参数调优或尝试不同的模型结构,以提升性能。 7. **部署与应用**:将训练好的模型部署到实际环境中,用于实时或批量分析文本情感。 在“Sentiment-Analysis-main”这个项目中,开发者很可能详细展示了以上步骤,包括数据加载、预处理、特征工程、模型训练、性能评估及可能的模型优化。通过查看该项目的代码和笔记,我们可以深入理解情感分析的具体实现,并从中学习到如何应用NLP技术解决实际问题。对于希望提升NLP技能或者对情感分析感兴趣的读者来说,这是一个宝贵的资源。
2025-06-23 22:46:44 11.73MB JupyterNotebook
1
亚马逊产品情感分析 该数据集包含亚马逊的客户评论。 此数据仅包含Amazon生产的电子产品。 数据集包含各种产品的评论。 用户给出“评论文本”(文本评论)和“评论等级”,范围为0-5。 根据0-5的这些评分,我们对评论是正面还是负面进行了分类。 有些评论包含评论文字,但没有评分。 该项目的目的是为用户仅给出文字评论的产品找到评分(正面或负面)。
2025-05-27 19:34:48 54KB JupyterNotebook
1
本项目使用了word2vec的中文预训练向量 模型分别有BiLSTM-attention和普通的LSTM两种 1、在Config中配置相关参数 2、然后运行DataProcess.py,生成相应的word2id,word2vec等文件 3、运行主函数main.py,得到训练好的模型,并保存模型 4、运行eval.py,读取模型,并得到评价 5、模型准确率平均85%左右
2025-04-08 12:59:45 119.64MB BI-LSTM attention
1
Stock_Market_Sentiment_Analysis-master.
2024-06-18 21:15:11 27.64MB
1
情感分析 一个基本的情绪分析器会从twitterAPI中获取推文,并对其进行分析,并显示有多少推文支持该推文,而有多少则不支持该特定关键字。一次分析10条推文。 Textblob库用于分析目的。 复制您的不记名令牌。 打开终端,然后键入以下命令。 export BEARER_TOKEN = {您的BEARER TOKEN}
2024-06-04 12:34:14 2KB Python
1
twitter_sentiment_bert_scikit Twitter美国航空数据集情感分析(情感分析),使用Bert句子编码作为特征,实现了SVM,XGBoost,RandomForest(随机森林)等多个分类算法,从而进行了交叉验证。 数据来自 预安装 我们在Python 3环境中运行该项目,建议您使用Anaconda 3通过以下脚本安装所需的软件包。 当然,您可以使用pip进行安装。 conda create -n tweet_sentiment -c anaconda python=3.7 numpy scikit-learn xgboost pandas tensorflo
1
SharpNLP是C#实现的一个开源的自然语言处理工具集,它提供了如下功能: * 句子分割 * 分词 * 词性标注(POS tagging) * a chunker (used to "find non-recursive syntactic annotations such as noun phrase chunks") * a parser * a name finder * a coreference tool * 访问wordent数据库的借口
2023-04-24 17:23:24 603KB NLP sentiment wordnet segmentation
1
多任务学习的多模式情感分析 使用CMU-MOSI数据库进行情感分析的单峰和多峰单任务,双任务和三任务学习模型。 在单任务模型中,我们执行回归实验以预测情绪得分。 在双任务模型中,我们执行多任务学习实验,这些实验以情感分数回归为主要任务,而强度或极性分类为辅助任务。 在三任务模型中,我们执行多任务学习实验,以情感得分回归为主要任务,强度和极性分类为辅助任务。 在多模式模型中,我们比较了早期融合,晚期融合,分层融合和张量融合网络。 这些代码适用于我们的ACL2018人类多峰语言计算建模研讨会论文: @inproceedings{tian2018polarity, title={Polarity and Intensity: the Two Aspects of Sentiment Analysis}, author={Tian, Leimin and Lai, Cather
2023-04-18 20:15:03 122KB sentiment-analysis multimodality acl2018 Python
1
推特情绪分析器 在推文上执行情感分析后,搜索推文并提供详细报告的Web应用程序。 应用程序位于
1
PyTorch-Tweet-情感分析
2023-04-15 14:07:29 2KB
1