ETC系统对收费广场安全的影响,陆键,叶凡,由于数据缺乏,国内外有关ETC对交通安全影响的评价研究开展甚少。ETC系统对交通安全究竟会产生怎样的影响,如何进行分析评价,
2024-07-16 23:46:41 154KB 首发论文
1
Dense 强化学习在自动驾驶安全验证中的应用 Dense 强化学习是一种基于人工智能的技术,旨在加速自动驾驶汽车的安全验证过程。传统的安全验证方法需要在自然istic驾驶环境中对自动驾驶汽车进行测试,这些测试需要大量的时间和经济投入。为了解决这个问题,研究人员开发了一种智能测试环境,使用基于 Dense 强化学习的背景代理来验证自动驾驶汽车的安全性能。 Dense 强化学习是一种基于深度强化学习的方法,通过编辑马尔科夫决策过程,删除非安全关键状态,重新连接关键状态,以便从自然istic驾驶数据中获取紧凑的信息。这种方法可以使神经网络从紧凑的信息中学习,实现了传统深度强化学习方法无法实现的任务。 在本研究中,研究人员使用 Dense 强化学习方法训练背景代理,来模拟自然istic驾驶环境中的安全关键事件。然后,他们使用高度自动化的测试车辆在高速公路和城市测试轨道上进行测试,结果表明,Dense 强化学习方法可以将评估过程加速多个数量级(10^3 到 10^5 倍)。 该方法的应用前景非常广阔,不仅可以用于自动驾驶汽车的安全验证,还可以用于其他安全关键的自动系统的测试和培训。随着自动驾驶技术的快速发展,我们正处于交通革命的前沿,这项技术将大大推动自动驾驶技术的发展。 知识点: 1. Dense 强化学习是一种基于深度强化学习的方法,用于加速自动驾驶汽车的安全验证过程。 2. 传统的安全验证方法需要在自然istic驾驶环境中对自动驾驶汽车进行测试,这些测试需要大量的时间和经济投入。 3. Dense 强化学习方法可以通过编辑马尔科夫决策过程,删除非安全关键状态,重新连接关键状态,以便从自然istic驾驶数据中获取紧凑的信息。 4. 该方法可以使神经网络从紧凑的信息中学习,实现了传统深度强化学习方法无法实现的任务。 5. 该方法可以用于自动驾驶汽车的安全验证,也可以用于其他安全关键的自动系统的测试和培训。 6. 该方法可以加速自动驾驶汽车的安全验证过程,达到多个数量级的加速效果。 7. 该方法的应用前景非常广阔,随着自动驾驶技术的快速发展,将大大推动自动驾驶技术的发展。 Dense 强化学习是一种基于人工智能的技术,旨在加速自动驾驶汽车的安全验证过程。其应用前景非常广阔,将大大推动自动驾驶技术的发展。
2024-06-24 10:34:58 3.19MB 自动驾驶仿真
1
Recent developments in laser scanning technologies have provided innovative solutions for acquiring three-dimensional (3D) point clouds about road corridors and its environments. Unlike traditional field surveying, satellite imagery, and aerial photography, laser scanning systems offer unique solutions for collecting dense point clouds with millimeter accuracy and in a reasonable time. The data acquired by laser scanning systems empower modeling road geometry and delineating road design parameters such as slope, superelevation, and vertical and horizontal alignments. These geometric parameters have several geospatial applications such as road safety management. The purpose of this book is to promote the core understanding of suitable geospatial tools and techniques for modeling of road traffic accidents by the state-of-the-art artificial intelligence (AI) approaches such as neural networks (NNs) and deep learning (DL) using traffic information and road geometry delineated from laser scanning data. Data collection and management in databases play a major role in modeling and developing predictive tools. Therefore, the first two chapters of this book introduce laser scanning technology with creative explanation and graphical illustrations and review the recent methods of extracting geometric road parameters. The third and fourth chapters present an optimization of support vector machine and ensemble tree methods as well as novel hierarchical object-based methods for extracting road geometry from laser scanning point clouds. Information about historical traffic accidents and their circumstances, traffic (volume, type of vehicles), road features (grade, superelevation, curve radius, lane width, speed limit, etc.) pertains to what is observed to exist on road segments or road intersections. Soft computing models such as neural networks are advanced modeling methods that can be related to traffic and road features to the historical accidents and generates regression equations that can be used in various phases of road safety management cycle. The regression equations produced by NN can identify unsafe road segments, estimate how much safety has changed following a change in design, and quantify the effects of road geometric features and traffic information on road safety. This book aims to help graduate students, professionals, decision makers, and road planners in developing better traffic accident prediction models using advanced neural networks.
2023-03-22 16:49:12 8.29MB neural networks deep learning
1
Infovision iWork-Safety 安全生产管理平台 配置手册.pdf
1
This document is a Safety Analysis Report for the Texas Instruments DRA829 device. 9 device. Device numbers coveredby this Safety Analysis Report include the following products: - RA829JTMGALFRQ1 - DRA829JTMGALFQ1 ......
2022-12-08 22:00:52 402KB DRA829 FMEDA
The National Highway Traffic Safety Administration established the electronics reliability research area to study the mitigation and safe management of electronic control system failures and operator response errors. This project supports NHTSA’s electronics reliability research area by: • Expanding the knowledge base for automated lane centering systems and the foundational steering and braking systems upon which ALC relies. • Providing an example for implementing a portion of the voluntary, in
2022-11-26 19:19:32 3.66MB ISO26262 功能安全 智能汽车
1
AUTOSAR safety, functional safety, watchdog, E2E....
2022-11-02 14:28:28 7.28MB autosar Safety
1
TDA4VM Safety Manual,TI原文档。
2022-10-08 13:24:09 11.23MB TDA4VM SafetyManual
afety over EtherCAT 成为推荐性国家标准是继 2014 年 EtherCAT 技术成为国标后,在 EtherCAT 技术国标化方面的重要里程碑。ETG 中国首席代表范斌女士说:目前,ETG 中国已经具备对 Safety over EtherCAT技术实施和应用的支持能力,ETG建立了 FsoE一致 性测试实验室并建立与 TÜV 南德的官方关系。我们将增强对中国自动化市场进行功能安 全的培训和引导,并时刻准备为该领域实施和应用 FsoE 技术进行强有力的支持。我们期 待 Safety over EtherCAT 技术能进一步推进中国制造业对机器安全的理解和使用,从而全 面提升机器/工厂的制造能力。---只支持个人学习
2022-08-05 15:44:52 32.61MB EtherCAT DAVE 英飞凌
1