Python基于深度学习的交通流预测(SAEs、LSTM、GRU) Requirement Python 3.6 Tensorflow-gpu 1.5.0 Keras 2.1.3 scikit-learn 0.19 Train the model Run command below to train the model: python train.py --model model_name You can choose "lstm", "gru" or "saes" as arguments. The .h5 weight file was saved at model folder. Experiment Data are obtained from the Caltrans Performance Measurement System (PeMS). Data are collected in real-time from individual detectors spanning the freeway system across all major metropolitan
2024-04-15 16:40:21 6.42MB LSTM
1
基于神经网络的交通流预测(SAEs、LSTM、GRU)。 数据来自 Caltrans 绩效测量系统 (PeMS)。数据是从跨越加利福尼亚州所有主要大都市地区的高速公路系统的各个探测器实时收集的。 运行以下命令来训练模型: python train.py --model model_name 您可以选择“lstm”、“gru”或“saes”作为参数。.h5重量文件保存在模型文件夹中。 Requirement Python 3.6 Tensorflow-gpu 1.5.0 Keras 2.1.3 scikit-learn 0.19
首先、wt(小波分析)过滤噪声 然后 saes(自编码器)提取强特征 最后用lstm进行学习训练
2021-09-04 11:02:46 9.58MB lstm wt saes
1