基于情感分析的对话推荐系统,李新胜,李剑,对话推荐系统作为对话系统和推荐系统的结合,最近受到了广泛的关注。为了解决在对话推荐系统中难以获得用户喜好的问题,在对话推
2023-03-01 20:32:22 772KB 首发论文
1
带有Python的电影推荐系统 通过推荐与特定电影最相似的电影的基本推荐系统。 使用该样本来构建系统,这不是一个可靠的系统,只会告诉您哪些电影与您选择的电影更相似。
2022-12-21 10:53:48 911KB 系统开源
1
群组推荐系统 [WIP] 该存储库包含 Group Recommendation 的最新研究论文、数据集和源代码(如果有)。 免费免费创建 PR 进行合并。 基于记忆的方法 偏好聚合 CoFeel:在群组推荐系统中使用情绪进行社交互动。 RecSys 2012 。 [ ] 具有部分信息的产品评级的数学建模和分析。 TKDD 2010 。 [ ] 通过纳入社会关系互动来增强群体推荐。 集团 2010 年。 [ ] 用于委员会决策的组推荐系统中的偏好聚合。 RecSys 2009 。 [ ] 一种考虑群组成员交互的群组推荐系统。 专家系统应用程序2008 年。 [ ] 基于用户档案合并的多观众电视节目推荐。 乌梅 2006 年。 [ ] 自适应无线电:使用否定首选项实现共识。 集团 2005 年。 [ ] 超过其成员的总和:群组推荐系统的挑战。 AVI 2004 。
1
音乐推荐系统 这是一种无监督的学习系统,可以分析多个用户的播放列表并为用户的特定播放列表提供建议。 该模型是基于用户对用户的推荐系统。 该项目考虑的数据集是音乐分析数据集FMA,并且下面的链接中提供了数据集文件的链接。 链接到数据集 设置项目 在项目文件夹中运行setup.py文件。 它下载必要的数据集文件。 可能需要一段时间,请不要担心:)。 如果要获取音乐文件,可以从上面的链接下载它们,也可以转到此搜索所需的歌曲。 要求 建议使用至少具有8GB RAM且Intel i5核心处理器或更高处理器的系统来运行该项目。 数据集描述 所考虑的数据集是一个音乐分析数据集,它不仅包含艺术家姓名,歌曲名称等常用属性,而且还考虑并分析了音乐属性(例如回声,每分钟节拍)以提供建议。 解决问题 数据集由四个csv文件组成,每个文件都描述歌曲的特征,例如元数据,特征等。每个文件均被单独清理,并基于公共密钥(
2022-12-14 00:58:51 8KB 系统开源
1
自述文件 该项目基于Hadoop和Hive。 如果您尚未设置它们,请参考以下说明: & 。 您可以从下载我们的测试数据。 README.txt具有有关其数据属性的非常详细的说明。 在wirteup中也有描述。 请将给定数据集中的::替换为 (这是一个标签)。 只要使其更容易处理即可。 请将目录更改为刚刚下载的数据文件。 对我来说是$cd ~/ml-1m 请启动hadoop,这是Hive运行的先决条件。 输入命令$hive -f extract.q 。 将出现目录“结果”。 它存储我们要使用的数据。 我们已经在源文件中提供了这样提取的数据,称为new_data.txt 。 在HDFS上创建文件夹,我们将数据放入文件夹: $ hadoop fs -makedir /hadoop 将数据放在HDFS上: $ hadoop -fs copyFromLocal /directory of
2022-12-02 20:42:13 84.58MB Java
1
基于知识图嵌入的推荐系统 基于知识图嵌入的推荐系统 本系统是一个基于知识图嵌入的商品推荐系统,以下是该系统的详细介绍,基本代码都是自己所写,TransE和Rescal方法实现部分是照着论文与相关代码自己进行的复现,并且相关代码中都有我写的一些注释。 1.generate_data.py是用于生成模拟数据,在进行真实使用时可以参照所生成的模拟数据的格式进行数据录入 2.data文件夹下需要有entities.txt以及relations.txt两个数据,他们分别是实体(people和items)的名称以及索引号,以及关联的名称以及索引号,关联也可以有多种,然后该文件夹下还应该有train.txt,valid.txt和test.txt,作为模型训练的依托,其中的neg.txt可要可不要,这个文件并不参与模型的训练过程 3.dataset.py文件主要是模型训练中处理数据的代码,model.p
2022-11-21 21:20:29 1.77MB 系统开源
1
电影推荐系统使用自动编码器和DNN 混合自动编码器和基于DNN的电影推荐模型
2022-07-02 15:50:32 1.4MB JupyterNotebook
1
使用机器学习和Flask的游戏推荐系统 这是我开发的一个游戏推荐系统项目,目的是将一些机器学习技术付诸实践,因此目标是使用户添加他已经玩过的游戏并将其添加到他的个人资料中,并在以后收到推荐。新游戏。 项目结构 . └── Game-Recommendation-System ├── __init__.py # setup our app ├── auth.py # the auth routes for our app ├── Games.db # our database ├── main.py # the non-auth routes for our app ├── models.py
2022-06-18 01:42:50 4.72MB JavaScript
1
蒸汽推荐系统 基于Steam用户库数据集中的协同过滤(皮尔逊相似系数)的推荐系统。 Pandas用于大多数数据操作,其中一些字符串函数用于非Unicode,非字母数字文本清除。 此外,Flask和JS用于前端。 数据整理 在建立此推荐系统时使用了两个数据集。 首先是来自Kaggle的。 这是为了将游戏名称标识为其应用程序ID,这是必需的,因为其他数据集(不包含应用程序ID)以用户每个游戏小时的小时数的形式包含隐式评级。 用户数据集也来自Kaggle。 隐式评级 用户数据集包含每个用户的数据 玩游戏 为了 小时。 我所做的是将隐式的评分时间转换为从1到5的显式评分。 只需将额定值线性映射到范围即可实现 在哪里 是平均游戏小时数 在整个数据集中播放。 端点数据集 此数据集是使用我们数据集中的游戏者的appid与包含游戏标头图像的媒体数据集的内部连接生成的。 该数据集用于检索浏览器中前端的媒
1
IT_销售带推荐系统 Python-Django网络应用程序,根据客户以前在公司购买的产品为客户推荐产品,推荐系统为Apriori算法。
2022-06-05 19:08:41 9.05MB python sales django recommendation-engine
1