《Flash QSPI 控制器IP用户指南》 Flash QSPI Controller IP,编号为IP6514E,是Cadence Design Systems, Inc.提供的一种专用于处理与串行四线闪存(Quad SPI Flash)交互的集成电路。该控制器设计用于高速、高效地管理通过四线SPI接口连接的闪存设备,其主要功能包括数据传输加速、协议转换以及对闪存设备的全面控制。 QSPI(四线串行外围接口)是一种扩展了传统SPI接口的数据传输速率,通过在时钟周期内同时发送和接收四个数据位,从而显著提高了通信速度。这种接口尤其适合于需要快速读取和写入大量数据的嵌入式系统,例如微控制器、数字信号处理器或者FPGA。 Cadence的Flash QSPI Controller IP支持多种工作模式,包括标准SPI模式、双线SPI模式、四线SPI模式以及一些特定的定制模式,以适应不同的应用需求。它能够处理复杂的命令序列,如擦除、编程和高速读取操作,同时确保与各种不同厂商的QSPI闪存设备兼容。 该IP核还包含了错误检测和校正机制,如CRC校验,以保证数据传输的可靠性。此外,其内部集成的缓冲区管理可以优化数据流,减少主机CPU的干预,提高系统的整体性能。控制器还支持动态配置,允许用户在运行时根据应用需求调整其工作参数。 在使用Cadence Flash QSPI Controller IP时,用户需要遵守严格的版权和许可条款。除了允许按照与Cadence的书面协议打印一份硬拷贝外,禁止未经许可的复制、分发或修改此文档。任何授权副本都必须包含原始的版权、商标和其他专有通知,并附带此权限声明。 总体来说,Flash QSPI Controller IP是实现高效、可靠且灵活的QSPI闪存控制的关键组件,广泛应用于嵌入式系统设计中,特别是那些对存储速度和容量有较高要求的场合。通过与Cadence的其他IP核和工具链集成,开发者可以构建出高性能的系统级芯片(SoC)解决方案,满足各种嵌入式应用的需求。
2025-05-28 14:18:39 1.72MB qspi flash flash控制器
1
ESP32-S3是一款由Espressif Systems公司生产的系统级芯片(SoC),专为物联网(IoT)设备设计,具有Wi-Fi和蓝牙功能,并集成了高性能的双核处理器。这款芯片是ESP32的升级版,提供了更高的计算能力、更多的内存容量、以及更丰富的外设接口。它支持多种通信协议,适合用于智能家居、穿戴设备、工业控制、环境监测等应用。 1.89寸QSPI屏幕,指的是尺寸为1.89英寸的屏幕,并支持四线串行外设接口(QSPI)。QSPI是一种高速的内存接口技术,能够提供比传统的SPI更高的数据传输速度。这种屏幕通常用于嵌入式系统,如物联网设备、智能手表、电子阅读器等,为用户提供图形化界面。 小摆件,是指体积小巧、设计精美的装饰品,可以是实用型的,也可以是仅具观赏性的。它们通常被摆放在桌面、架子或者任何人们想要装饰的角落。随着技术的进步,现代小摆件越来越多地集成电子技术,使得摆件可以具备一些如显示信息、互动、娱乐等智能化功能。 磁吸充电是一种无线充电技术,通过磁力将充电器和设备连接起来进行充电。这种技术的便捷之处在于它简化了充电过程,用户只需将设备放置在充电器上,无需担心插头是否插对。磁吸充电广泛应用于智能手机、无线耳机等移动设备。 无线充电是一种利用电磁感应、磁共振或者其他无线传输方式来给电子设备充电的技术。它允许用户不需要连接电线即可为设备供电,具有方便、安全等优点。无线充电技术可以分为近场无线充电和远场无线充电。近场充电主要应用于便携式设备,而远场充电则有望用于更广泛的应用场合。 综合以上信息,这个小摆件项目涉及到了物联网技术、无线通信技术、以及新型充电技术,它不仅集合了多种先进技术,还具有美化生活空间的功能。在设计上,它应当考虑如何将这些技术集成到一个小型装置中,同时确保其工作稳定性和用户体验。此外,项目开发中还可能涉及到硬件选择、电路设计、固件编程、交互界面设计等多个方面。
2025-05-22 10:02:06 136.95MB
1
### QSPI配置详解 #### 一、概述 本篇文章旨在详细介绍如何配置TC397微控制器中的QSPI(Quad SPI)接口。QSPI是一种高速串行接口,常用于连接存储器或其他外设。TC397芯片具备六路SPI接口,其中QSPI4将作为本文的重点介绍对象。 #### 二、硬件接口配置 在开始软件配置之前,需要明确QSPI4接口所涉及的硬件引脚及其功能: - **QSPI4_MOSI** (Master Out Slave In): P22_0 - **QSPI4_MISO** (Master In Slave Out): P22_1 - **QSPI4_CLK** (Clock): P22_3 - **QSPI4_CS0** (Chip Select 0): P22_2 - **QSPI4_CS1** (Chip Select 1): P02_1 - **QSPI4_CS2** (Chip Select 2): P33_3 此外,还需要配置两个额外的GPIO引脚,用作外部设备的使能控制信号: - **MCU2MPMU_CS0_EN1_A**: P33_12 - **MCU2MPMU_CS0_EN1_B**: P33_13 #### 三、引脚配置 接下来进行具体的引脚配置: 1. **QSPI4_MOSI** (P22_0): 输出模式,备用功能3 (ALT3)。 2. **QSPI4_MISO** (P22_1): 输入模式,通用GPIO。 3. **QSPI4_CLK** (P22_3): 输出模式,备用功能3 (ALT3)。 4. **QSPI4_CS0** (P22_2): 输出模式,特殊功能输出3 (SLSO3)。 5. **QSPI4_CS1** (P02_1): 输出模式,特殊功能输出7 (SLSO7)。 6. **QSPI4_CS2** (P33_3): 输出模式,特殊功能输出2 (SLSO2)。 7. **MCU2MPMU_CS0_EN1_A** (P33_12): 输出模式,通用GPIO。 8. **MCU2MPMU_CS0_EN1_B** (P33_13): 输出模式,通用GPIO。 #### 四、SPI模块配置 完成引脚配置后,进入SPI模块的具体配置步骤: 1. **SpiChannel配置**: - 指定SPI通道的数据传输方向(输入/输出)及数据宽度等。 2. **SpiExternalDevice配置**: - 配置外部设备的相关参数,如时钟极性、相位等。 3. **SpiJob配置**: - 定义一个SPI通信任务(Job),每个Job可包含一个或多个SPI通道。 - Job的执行顺序基于其优先级设置。 4. **SpiSequence配置**: - 将一系列Job组合成一个序列(Sequence),以实现更复杂的通信逻辑。 5. **SpiHwConfiguration配置**: - 包括时钟源选择、数据模式等硬件层配置项。 #### 五、DMA初始化 为了提高数据传输效率,通常会启用DMA(Direct Memory Access)方式来处理SPI数据传输。下面是一段示例代码,展示了如何初始化SPI4的DMA功能: ```c void SPI4_Mount_Dma(void){ volatile Ifx_SRC_SRCR *src = &MODULE_SRC.QSPI.QSPI[4].TX; src ->B.SRPN =3; // 设置DMA请求优先级 src->B.TOS = 1; // 使能传输完成中断 src->B.CLRR = 1; // 清除中断标志 src->B.SRE = 1; // 启用中断 src = &MODULE_SRC.QSPI.QSPI[4].RX; src ->B.SRPN =2; // 设置DMA请求优先级 src->B.TOS = 1; // 使能传输完成中断 src->B.CLRR = 1; // 清除中断标志 src->B.SRE = 1; // 启用中断 Spi_SetAsyncMode(SPI_INTERRUPT_MODE); // 设置SPI为异步模式 } ``` #### 六、中断服务函数 配置好DMA之后,还需编写相应的中断服务函数来处理DMA传输完成事件: ```c ISR(DMA_IMU_RX_CH2SR_Isr) { Dma_ChInterruptHandler(2); // 处理通道2的接收中断 } ISR(DMA_IMU_TX_CH3SR_Isr) { Dma_ChInterruptHandler(3); // 处理通道3的发送中断 } ``` #### 七、总结 通过上述步骤,我们可以成功地配置TC397中的QSPI4接口,以实现高效可靠的SPI数据传输。需要注意的是,在实际应用过程中,还应根据具体需求调整配置参数,并确保所有硬件资源正确连接。
2025-01-07 19:55:09 3.27MB mcal
1
在本文中,我们将深入探讨如何使用QSPI接口和AMOLED驱动集成电路SH8601Z1,在NRF52840微控制器硬件平台上实现AMOLED屏幕的初始化和功能测试,例如刷白屏。Nordic Semiconductor的NRF52840是一款高效的、多协议的超低功耗蓝牙5.0 SoC,它具有强大的ARM Cortex-M4F处理器,非常适合物联网应用和嵌入式系统中的显示控制。 1. **QSPI接口**:快速串行外围接口(Quad Serial Peripheral Interface)是一种高速通信协议,它允许微控制器与外部设备如闪存、SRAM或像SH8601Z1这样的显示驱动器进行四线同步通信,从而显著提高数据传输速率。NRF52840支持QSPI,使得与AMOLED驱动IC的交互更加高效。 2. **SH8601Z1驱动IC**:SH8601Z1是一款专为AMOLED显示设计的驱动芯片,它集成了电源管理、时序控制、数据驱动等功能,能够驱动AMOLED像素阵列,并且支持多种分辨率和颜色模式。在本例程中,SH8601Z1与NRF52840通过QSPI接口连接,接收并执行来自MCU的命令和数据。 3. **AMOLED屏幕**:有源矩阵有机发光二极管显示屏是一种自发光显示技术,具有高对比度、广视角和快速响应速度。AMOLED通常需要一个专用的驱动电路来控制每个像素的亮度,SH8601Z1就是这样一种驱动器。 4. **初始化过程**:在AMOLED屏幕点亮之前,必须进行一系列初始化步骤,包括配置SH8601Z1的寄存器、设置显示分辨率、初始化时序参数等。这些设置通常通过特定的命令序列通过QSPI接口发送到驱动IC。 5. **刷白屏测试**:这是验证屏幕正常工作的基本方法。通过向SH8601Z1发送命令,使其将所有像素点设置为最高亮度,即白色,可以检查屏幕是否正确响应以及是否有任何坏点。 6. **代码实现**:在NRF52840上实现QSPI接口和AMOLED驱动需要编写固件代码,包括设置QSPI外设寄存器、配置中断、编写通信协议栈(可能包括SPI转QSPI桥接代码)、以及定义针对SH8601Z1的命令序列。压缩包中的“lcd”文件可能包含了这些例程和相关头文件。 7. **调试与优化**:在实际应用中,可能需要对驱动程序进行多次调试和优化,以确保显示效果最佳,包括调整亮度、对比度、颜色平衡,以及处理屏幕更新速度和功耗等问题。 总结来说,"QSPI接口 AMOLED驱动例程"是一个涉及NRF52840微控制器、SH8601Z1驱动IC、QSPI通信协议和AMOLED显示技术的综合项目。通过理解这些知识点,开发者可以创建自己的AMOLED显示解决方案,为物联网设备、智能穿戴产品或便携式设备提供生动、高效的显示界面。
2024-10-11 12:57:32 2KB NRF52840 AMOLED QSPI
1
对于Xilinx公司Zynq系列的FPGA支持QSPI方式启动加载,但在Vivado开发环境SDK中不能够支持国产化厂家复旦微电子生产的Nor QSPI Flash,为此验证FPGA采用XC7Z020,Nor FLASH采用FM25F32。并成功烧写了uboot和FSBL,启动加载成功。 因为SDK不能支持这款FLASH,所以用SDK自带烧写工具不能够烧写成功。因此采用自编测试程序进行烧写
2024-04-12 02:11:39 2.27MB zynq Qspi flash
1
qspi接口控制,指令包括spi、dual spi、quad spi,通过验证,供参考
2023-11-07 18:17:39 3KB
IPS6404是64Mbit IoT RAM,采用QSPI高速接口可以实现很高的读写速率,对于管脚有限的MCU扩充SRAM非常有用。已经在STM32H750上通过验证
2023-03-14 16:26:39 4KB IPS6404 QSPI SRAM STM32
1
ST77903为sitronix 小体积IC,主要应该在穿戴,接口是QSPI,因为内部不带RAM,所以QSPI必须连续传输,在HOST必须使用一个专门线程,来完成LCD的刷屏,DEMO内容包括3个手表表盘,UI框架是LVGL,系统用的RT-THREAD
2023-02-05 11:16:19 13.66MB ST77903 SITRONIX LCD
1
QSPI for SOC 连接AHB总线和AXI总线 6线spi 设计验证全流程 模块分为三层,相互独立,自定义时钟及相位
2022-10-09 19:00:58 5.98MB ahb axi QSPI FLASH
1
这个压缩包是英飞凌TC275单片机的SPI通讯的源码包,本人通过测试可用,带有模拟的SPI源码。
2022-06-28 20:51:02 27.8MB 英飞凌mcuTC275
1