学习丰富的功能以进行真实图像还原和增强(ECCV 2020) , , , , , 和 论文: : 补充文件: 视频演示: : 摘要:为了从降级版本中恢复高质量图像内容,图像恢复在监视,计算摄影,医学成像和遥感等领域拥有众多应用。 最近,卷积神经网络(CNN)与传统的图像恢复任务方法相比取得了巨大的进步。 现有的基于CNN的方法通常以全分辨率或渐进式低分辨率表示形式运行。 在前一种情况下,获得了空间精确但上下文上不那么健壮的结果,而在后一种情况下,生成了语义上可靠但空间上不太准确的输出。 在本文中,我们提出了一种新颖的体系结构,其总体目标是通过整个网络维护空间精确的高分辨率表示,并从低分辨率表示接收强大的上下文信息。 我们方法的核心是包含几个关键元素的多尺度残差块:(a)并行多分辨率卷积流,用于提取多尺度特征;(b)跨多分辨率流的信息交换;(c)空间和渠道关注机
1
简历中的令人敬畏的关注机制 目录 介绍 PyTorch实现多种计算机视觉中网络设计中用到的注意机制,还收集了一些即插即用模块。由于能力有限的能力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交问题或者进行PR。 注意机制 纸 发布 关联 大意 博客 CVPR19 将高阶和关注机制在网络中部地方结合起来 CVPR20 NAS + LightNL CVPR18 最经典的通道专注 CVPR19 SE +动态选择 ECCV18 串联空间+通道注意力 BMVC18 平行空间+通道关注 微创18 平行空间+通道关注 CVPR19 自我注意 ICCVW19 对NL进行改进 ICCV19 对NL改进 ICASSP 21 SGE +渠道洗牌 CVPR20 SE的改进 19号 群组+空间+频道 20倍 频域上的SE操作 NeurIPS18 NL的思想应用到空间和通道 ICCV19 s
1
CCNet-Pure-Pytorch 用于纯Pytorch中语义分割的Criss-Cross Attention(2d&3d),具有更快,更精确的实现方式。 更新 **** 2021/03:纯pytorch实现3D CCNET模块的三种被释放 。 您可以在和检查其正确性 介绍 我非正式地重新实现了纯Pytorch中的以便在不同版本和环境下实现更好的兼容性。 以前的许多开源项目都在Pytorch上使用了Cuda扩展,因此存在兼容性和精度损失的问题。 此外,当我们设置cudnn.benchmark = True时,Pytorch可能无法优化和加速Cuda扩展。 为了解决这些问题,我基于的张量变换在CC.py中设计了一个Criss-Cross Attention操作,该操作并行执行,并且在向前结果和向后渐变中显示出更快的速度和更精确的效果。 我的运作和表现 不需要CUDA扩展。 以前的“ Cr
2021-11-18 14:16:15 3.96MB tensorflow pytorch attention ccnet
1
自注意力机制Self Attention——Pytorch源代码
2021-08-17 13:23:55 4KB pytorch attention 深度学习 图像处理
1