预测模型:时空预测模型PyTorch复现 models 文件夹 在 models 目录中,每一个文件夹存储一个结构的完整模型代码,复现参照了论文中的公式、图示以及 GitHub 作者实现的代码(如果有的话) 这些模型均假定输入的 Tensor 的 shape 为 (batch, sequence, channel, height, width) 这里的目的是为了学习,尽可能内聚成一个个小的 Module 再组合的,应该效率很差 util 文件夹 patch 针对大尺寸数据进行 patch 分割的方法,不过这里要根据实际情况修改下,这里是针对五维数据的,如果针对四维,则参照逻辑修改下即可 TrainingTemplate 和 TestingTemplate 我自己写的训练过程的模板类,一般继承重写一些方法即可 content_tree 包含生成目录树的方法
2024-07-06 18:25:29 56KB 预测模型 时空预测
1
目标检测 pytorch复现Fast_RCNN目标检测项目 利用coco2017数据集训练Fast-RCNN模型(训练过程详细步骤记录): (1)检测数据集利用选择搜索算法(selective-search)生成一定数量的候选框, (2)将候选框与真实标注框进行IOU(交并比)计算,将真是标注框的作为正样本,将0.1
1
利用coco2017数据集训练Fast-RCNN模型(训练过程详细步骤记录): (1)检测数据集利用选择搜索算法(selective-search)生成一定数量的候选框, (2)将候选框与真实标注框进行IOU(交并比)计算,将真是标注框的作为正样本,将0.1
2023-03-28 09:26:27 509.47MB pytorch 目标检测 Fast_RCNN
1
目标追踪篇---Yolov5_DeepSort_Pytorch复现 源代码修改可用,具体过程可看我的博客 https://blog.csdn.net/m0_46825740/article/details/121973155 修改后可以训练自己的数据,比较实用
2022-07-20 21:06:25 120.66MB 目标追踪 人工智能 深度学习
1
【图像分类】一文彻底搞明白GoogLeNet https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/117776589?spm=1001.2014.3001.5502
2021-06-13 12:07:03 6KB 图像分类
包括论文资料以及Github上ultralytics的工作,基于pytorch的yolov3复现,该代码包括检测与训练两个部分。如果资源过期或其他相关问题请在CSDN留言。
2021-04-28 16:08:50 13.54MB yolo pytorch
1
伪三维残差网络(P-3D)的pytorch版本,支持预训练模型...........................................
1