python 聚类 效果图 使用PCA(主成分分析)对四维特征值进行降维并且使用matplotlib进行画图显示聚类效果 使用PCA(主成分分析)对四维特征值进行降维并且使用matplotlib进行画图显示聚类效果 在main.py源代码中修改自己对水果属性(甜度、酸度、水分、脆度)的喜好程度,修改完后执行代码 随机数据集会在Data.csv中生成 会根据数据集进行PCA降维分析和绘图,可以在最后的图表中看出喜欢不喜欢一般般具有明显聚类和区分效果
2023-02-01 15:29:21 9.12MB python 聚类效果图
1
基于豆瓣电影用户数据使用Canopy+K-means聚类的协同过滤推荐 更新对比实验、豆瓣热门电影数据集
2022-12-26 19:31:14 127.42MB 人工智能 python 聚类算法 推荐算法
1
人工智能 聚类算法 k-means案例 数据降维 聚类并可视化(食物实例)
2022-10-13 22:05:24 319KB python 聚类算法 kmeans算法
1
基于python的高斯混合模型(GMM 聚类)的 EM 算法实现
2022-09-28 16:03:46 7KB 算法 python 聚类 开发语言
python简单实现kmean聚类算法
2022-07-01 04:33:15 1KB python 聚类 kmean
1
python3代码,根据图像颜色特征进行据类。 第一步:得到图片的RGB模型矩阵 第二步:将RGB模型转化为HSV模型 第三步:将HSV转化为n维的特征向量 第四步:调用K-means对特征矩阵进行聚类
2022-05-03 16:53:37 3KB kmeans python 聚类
1
主要介绍了Python聚类算法之凝聚层次聚类的原理与具体使用技巧,具有一定参考借鉴价值,需要的朋友可以参考下
1
主要介绍了python 代码实现k-means聚类分析(不使用现成聚类库),本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
1
Python聚类分析,是无监督的机器学习中的一种!
2021-11-19 11:52:21 64KB Python
1
本程序是在python中完成,基于sklearn.cluster中的k-means聚类包来实现数据的聚类,对于里面使用的数据格式如下:(注意更改程序中的相关参数) 138 0 124 1 127 2 129 3 119 4 127 5 124 6 120 7 123 8 147 9 188 10 212 11 229 12 240 13 240 14 241 15 240 16 242 17 174 18 130 19 132 20 119 21 48 22 37 23 49 0 42 1 34 2 26 3 20 4 21 5 23 6 13 7 19 8 18 9 36 10 25 11 20 12 19 13 19 14 5 15 29 16 22 17 13 18 46 19 15 20 8 21 33 22 41 23 69 0 56 1 49 2 40 3 52 4 62 5 54 6 32 7 38 8 44 9 55 10 70 11 74 12 105 13 107 14 56 15 55 16 65 17 100 18 195 19 136 20 87 21 64 22 77 23 61 0 53 1 47 2 33 3 34 4 28 5 41 6 40 7 38 8 33 9 26 10 31 11 31 12 13 13 17 14 17 15 25 16 17 17 17 18 14 19 16 20 17 21 29 22 44 23 37 0 32 1 34 2 26 3 23 4 25 5 25 6 27 7 30 8 25 9 17 10 12 11 12 12 12 13 7 14 6 15 6 16 12 17 12 18 39 19 34 20 32 21 34 22 35 23 33 0 57 1 81 2 77 3 68 4 61 5 60 6 56 7 67 8 102 9 89 10 62 11 57 12 57 13 64 14 62 15 69 16 81 17 77 18 64 19 62 20 79 21 75 22 57 23 73 0 88 1 75 2 70 3 77 4 73 5 72 6 76 7 76 8 74 9 98 10 90 11 90 12 85 13 79 14 79 15 88 16 88 17 81 18 84 19 89 20 79 21 68 22 55 23 63 0 62 1 58 2 58 3 56 4 60 5 56 6 56 7 58 8 56 9 65 10 61 11 60 12 60 13 61 14 65 15 55 16 56 17 61 18 64 19 69 20 83 21 87 22 84 23 41 0 35 1 38 2 45 3 44 4 49 5 55 6 47 7 47 8 29 9 14 10 12 11 4 12 10 13 9 14 7 15 7 16 11 17 12 18 14 19 22 20 29 21 23 22 33 23 34 0 38 1 38 2 37 3 37 4 34 5 24 6 47 7 70 8 41 9 6 10 23 11 4 12 15 13 3 14 28 15 17 16 31 17 39 18 42 19 54 20 47 21 68 22
2021-09-16 23:26:10 2KB K-means python 聚类
1