《Python 数学实验与建模》是一本由司守奎和孙玺菁合著的书籍,专注于使用Python语言进行数学实验和模型构建。这本书旨在帮助读者掌握如何利用Python的强大功能来解决数学问题,进行数值计算,以及构建各种数学模型。在Python的世界里,数学不再仅是抽象的概念,而是可以通过编程实现的实体,这为学习者提供了全新的视角和工具。 Python作为一种高级编程语言,因其简洁明了的语法和丰富的库支持,成为科学计算和数据分析的理想选择。在数学实验方面,Python可以用来执行各种计算任务,如线性代数、微积分、概率统计、复数运算等。例如,NumPy库提供了矩阵和数组操作,SciPy则包含了一系列用于科学计算的函数,而matplotlib则能帮助我们可视化数据,使复杂的结果一目了然。 在建模方面,Python的灵活性使得它可以应用于众多领域,如经济学、物理学、生物学等。例如,通过模拟和优化算法,可以建立经济模型预测市场走势;在物理学中,Python可以用来求解复杂的动力学系统;在生物学领域,可以构建种群动态模型,研究物种之间的相互作用。 书中的数据文件可能包含了用于演示和练习的各种实例数据。这些数据可能是数值数组、图像、文本或者更复杂的结构,它们将配合书中的代码示例,让读者亲自动手实践,体验Python在数学实验和建模中的应用。 例如,一个可能的数据文件可能是"线性回归.csv",其中包含了用于线性回归分析的样本数据。你可以使用pandas库读取这个CSV文件,然后用scikit-learn库构建和训练线性回归模型。通过这样的实验,你可以理解线性关系的统计学意义,并学习如何评估模型的性能。 另一个可能的文件是"混沌系统.txt",它可能包含了描述混沌系统(如洛伦兹吸引子)的参数。你可以使用这些参数来运行数值模拟,观察系统的动态行为,从而深入理解混沌理论。 这本书结合Python和数学,提供了一个强大的学习平台,让读者能够探索数学的深度,同时提升编程技能。通过实际操作和分析数据,你将不仅理解理论概念,还能掌握实用的解决方案,为未来的数学研究或相关工作打下坚实基础。
2024-08-30 13:17:45 29.62MB python
1
[免费]2023年数学建模国赛b题前三问Word完整版(自己团队写的,市面上找不到的) 代码用的是Python编写 各个步骤非常详细 快来看看吧 ------------------------------------------------------------------------------------------------------------------- [免费]2023年数学建模国赛b题前三问Word完整版(自己团队写的,市面上找不到的) 代码用的是Python编写 各个步骤非常详细 快来看看吧 ------------------------------------------------------------------------------------------------------------------- [免费]2023年数学建模国赛b题前三问Word完整版(自己团队写的,市面上找不到的) 代码用的是Python编写 各个步骤非常详细 快来看看吧
2024-08-22 07:49:23 523KB python 数学建模 word
1
Python是一种强大的编程语言,尤其在数学建模领域中,它凭借其简洁的语法、丰富的库支持和高效的数据处理能力,成为许多科学家和工程师的首选工具。"Python数学建模算法与应用"是一门课程,旨在教授如何利用Python解决实际的数学问题,并进行模型构建和分析。课件和习题解答提供了学习者深入理解和实践这些概念的平台。 在Python数学建模中,主要涉及以下几个关键知识点: 1. **基础语法与数据类型**:Python的基础包括变量、条件语句、循环、函数等,以及各种数据类型如整型、浮点型、字符串、列表、元组、字典等。理解这些是进一步学习的基础。 2. **Numpy库**:Numpy是Python科学计算的核心库,提供高效的多维数组对象和矩阵运算功能。在数学建模中,数组和矩阵操作是常见的,Numpy简化了这些操作。 3. **Pandas库**:Pandas用于数据清洗、整理和分析,它的DataFrame结构非常适合处理表格数据。在建模过程中,数据预处理至关重要,Pandas能帮助我们处理缺失值、异常值和转换数据格式。 4. **Matplotlib和Seaborn**:这两个库主要用于数据可视化,它们可以绘制出各种图表,帮助我们理解数据分布、趋势和关系,对于模型的理解和验证十分关键。 5. **Scipy库**:Scipy包含了许多科学计算的工具,如优化、插值、统计、线性代数和积分等。在数学建模中,这些工具用于解决复杂的计算问题。 6. **Scikit-learn库**:Scikit-learn是机器学习库,提供了各种监督和无监督学习算法,如回归、分类、聚类等,对于预测和分类问题的建模非常实用。 7. **数据分析与模型选择**:在数学建模中,我们需要根据问题选择合适的模型,例如线性回归、逻辑回归、决策树、随机森林、支持向量机等,并通过交叉验证和网格搜索等方法优化模型参数。 8. **算法实现**:课程可能涵盖了各种数学模型的Python实现,如微分方程组的数值解法、最优化问题的求解算法(梯度下降、牛顿法等)。 9. **习题解答**:课后的习题解答部分将帮助学生巩固所学,通过实际操作来提升理解和应用能力。 10. **课件**:课件可能包含讲解、示例代码和案例分析,帮助学生系统地学习Python数学建模的全过程。 在"Python数学建模算法与应用"的课程中,学生不仅会学习到Python的基本语法和高级特性,还会接触到实际的数学建模问题,如预测、分类、最优化等问题的解决方案。通过kwan1117这个文件,学生可以查看课件内容,解答习题,进一步提升自己的技能。在实践中不断探索和掌握Python在数学建模中的应用,将有助于培养出解决实际问题的能力。
2024-08-21 10:14:34 81.18MB
1
数字化信息社会具有的两个特征:一是计算机技术的迅速发展与广发应用;二是数学的应用向其它领域渗透。随着计算机技术的飞速发展,科学计算的深度不断扩展,科学理论与工业应用不断耦合,更多的算法不断地被反复证明与改进。数学建模是对现实世界的特定对象,为了特定的目的,根据特有的内在规律,对其进行必要的抽象、归纳、假设和简化,运用适当的数学工具建立的一个数学结构 含:线性规划、排队论模型、微分方程建模、时间序列模型、支持向量机、预测方法、层次分析法
2023-09-04 13:31:12 97KB python 算法 软件/插件 几何学
1
包括各种常规的数学建模问题的模型,比如规划问题,时间序列分析,灰色预测等
2023-04-13 15:27:30 12.64MB python 学习 开发语言
1
【python】数学建模常用算法与程序.zip
2023-01-01 22:51:25 109.58MB python 数学建模常用算法与程序
1
Python数学实验与建模》以 Python 软件为基础, 详细介绍了数学建模的各种常用算法及其软件实现, 内容涉及高等数学、工程数学中的相关数学实验、数学规划、插值与拟合、微分方程、差分方程、评价预测、图论模型、多元分析、Monte Carlo 模拟、智能算法、时间序列分析、支持向量机、图像处理等内容, 既有对算法数学原理的详述, 又有案例和配套的 Python 程序. 《Python数学实验与建模》含有 Python 快速入门基础, 可以帮助 Python 零基础的读者快速掌握Python 语言. 但对于没有其他任何编程语言基础的读者, 建议参考一些更加具体的 Python 相关书籍.
2022-08-31 10:00:53 64.18MB
1
“尖叫效应”是心理学中的一个著名效应。例如在一个人潮涌动的公众场合,如果有人突然歇斯底里地尖叫,往往能快速吸引人们的注意力并博取眼球。在网络信息传播中,“尖叫效应”也无处不在。一些网络平台利用大数据和人工智能,获取并分析用户浏览记录和兴趣爱好等信息,大量推送段子、恶搞、色情等低俗内容。无论是从满足人们的猎奇心理,还是引发人们的指责批评,传播者都能从中获取高额的流量和点击率。 “回声室效应”指的是在一个相对封闭的媒体环境中,一些意见相近的声音不断重复,甚至夸张扭曲,令处于其中的大多数人认为这些声音就是事实的全部, 不知不觉中窄化自己的眼界和理解,走向故步自封甚至偏执极化。在现代社会中,由于互联网以及社交媒体的发展,在网络信息传播中“回声室效应”愈发明显。部分商业网站会分析记录用户的搜寻结果以及使用习惯,持续地将一位用户所喜欢的内容提供给该用户,导致一个人在同一网站中接受到的资讯被局限于某个范围内。 “尖叫效应”与“回声室效应”容易导致“信息茧房”的形成。所谓“信息茧房”指的是,在信息传播中人们自身的信息需求并非全方位的,只会选择自己想要的或能使自己愉悦的信息。
2022-08-15 05:34:42 77.12MB python pycharm 数学建模
1
书中程序以及课件,加上我自己完成(极少部分参考相应文章)完成的课后习题解答。课后习题只缺少最后最后两章,这两章节的内容书中都有。
1