主要为大家详细介绍了python实现朴素贝叶斯分类器,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
1
本文用的是sciki-learn库的iris数据集进行测试。用的模型也是最简单的,就是用贝叶斯定理P(A|B) = P(B|A)*P(A)/P(B),计算每个类别在样本中概率(代码中是pLabel变量) 以及每个类下每个特征的概率(代码中是pNum变量)。 写得比较粗糙,对于某个类下没有此特征的情况采用p=1/样本数量。 有什么错误有人发现麻烦提出,谢谢。 [python] view plain copy # -*- coding:utf-8 -*- from numpy import * from sklearn import datasets import numpy as np cl
2021-09-27 21:16:38 39KB data python python算法
1