1.引言
在监督学习领域,人类已经取得了很大的进步,但这也意味着我们需要大量带标签的数据来训练模型,这些算法需要把这些数据扫描一遍又一遍来寻找最优模型参数。然而现实生产活动中,带标签的数据相对缺乏,海量的无标签数据没有得到充分利用,本篇博文将浅显的介绍下一种半监督方法——伪标签。
2.什么是伪标签
伪标签是将可靠的测试数据的预测结果添加到训练数据。伪标签的建立过程大概有五步:(1)利用训练数据建立模型;(2)预测未知测试数据集的标签;(3)在训练数据中加入可靠的测试数据预测值;(4)利用组合数据训练新模型或微调第一步中的模型;(5)使用新模型预测测试集数据。
3. 训练过程
本篇博文参考的是
2022-09-12 22:08:16
191KB
ab
do
lab
1